APROVECHAMIENTO DE RESIDUOS VITIVINÍCOLAS CON FINES BIOTECNOLÓGICOS

ANDREA ANTONIOLLI, ARIEL FONTANA,
PATRICIA PICCOLI, RUBÉN BOTTINI

Instituto de Biología Agrícola de Mendoza, Facultad de Ciencias Agrarias, CONICET-Universidad Nacional de Cuyo, Chacras de Coria, Argentina

Orujo

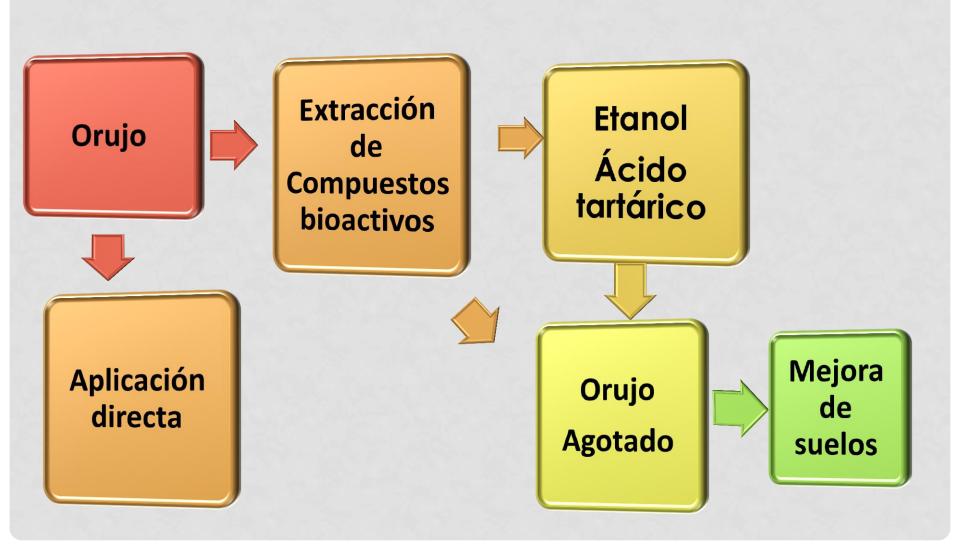
Restos de poda

Escobajo

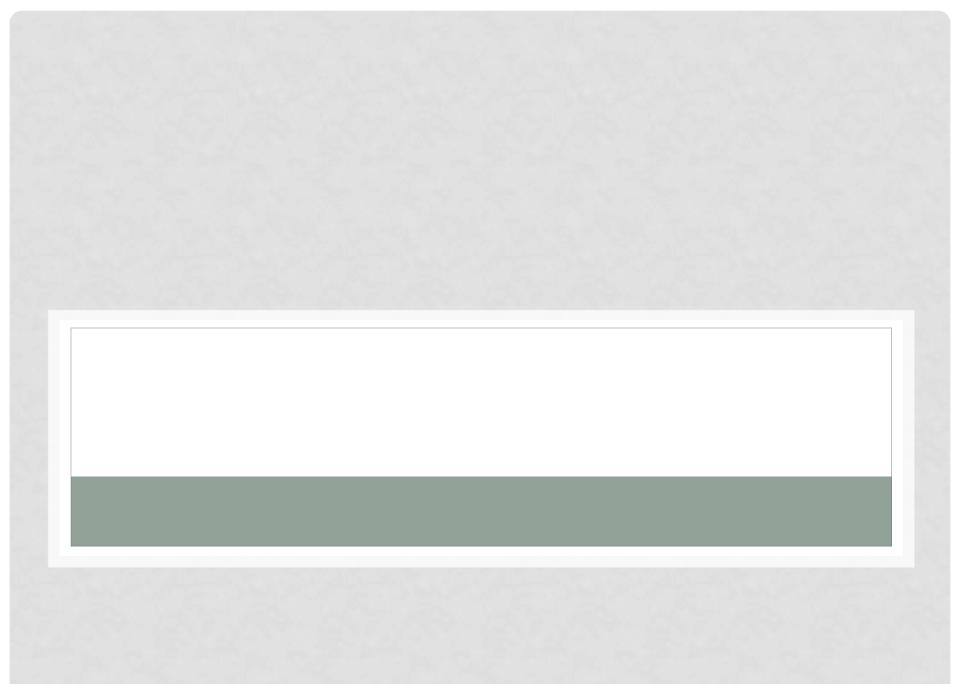
Orujo

Orujo Malbec

METABOLITOS PRIMARIOS


METABOLITOS SECUNDARIOS COMPUESTOS ORIGINADOS VINIFICACIÓN

ACTUAL APROVECHAMIENTO DE ORUJOS



Mejora de suelos

APROVECHAMIENTO DE COMPUESTOS BIOACTIVOS

METABOLITOS SECUNDARIOS EN ORUJOS DE UVAS TINTAS (VITIS VINIFERA L.) CV. MALBEC Y SUS APLICACIONES BIOTECNOLÓGICAS

OBJETIVO GENERAL

Extraer compuestos del metabolismo secundario presentes en el orujo de uva de cv. Malbec, caracterizarlos y evaluar su potencial aplicación en biotecnología.

METABOLITOS

PRIMARIOS:

- Azúcares
- Aminoácidos
- Polímeros estructurales
- Lípidos

SECUNDARIOS:

- Compuestos fenólicos
- Terpenos
- VOCs

Compuestos bioactivos

- Son constituyentes comunes de alimentos de origen vegetal
- Comprenden una amplia variedad de moléculas que tienen una estructura de polifenol (varios grupos hidroxilo en los anillos aromáticos) o un anillo de fenol

Creciente interés en los compuestos fenólicos

En los últimos años investigadores y productores de alimentos han vuelto cada vez más interesados en polifenoles.

Razones:

reconocimiento
de las
propiedades
antioxidantes

abundancia en nuestra dieta

su papel en la prevención de diversas enfermedades asociadas con el estrés oxidativo

COMPUESTOS BIOACTIVOS

FIBRA ALIMENTARIA

TERPENOS fitosteroles

OTROS METABOLITOS: aminoácidos lípidos

OBTENCIÓN DE EXTRACTO DE ORUJO LIOFILIZADO Y ORUJO LIOFILIZADO.

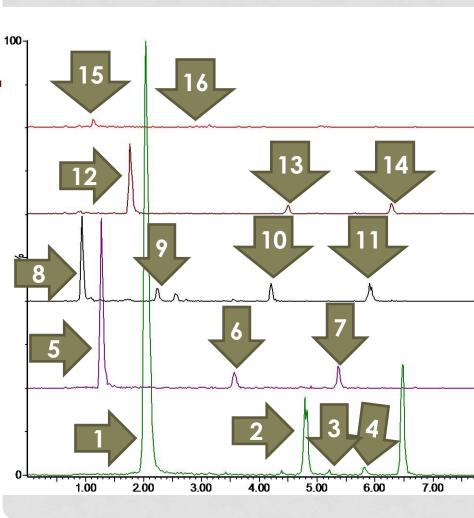
OBTENCIÓN DE EXTRACTO DE ORUJO

Análisis

Pruebas biológicas

OBTENCIÓN DE ORUJO LIOFILIZADO

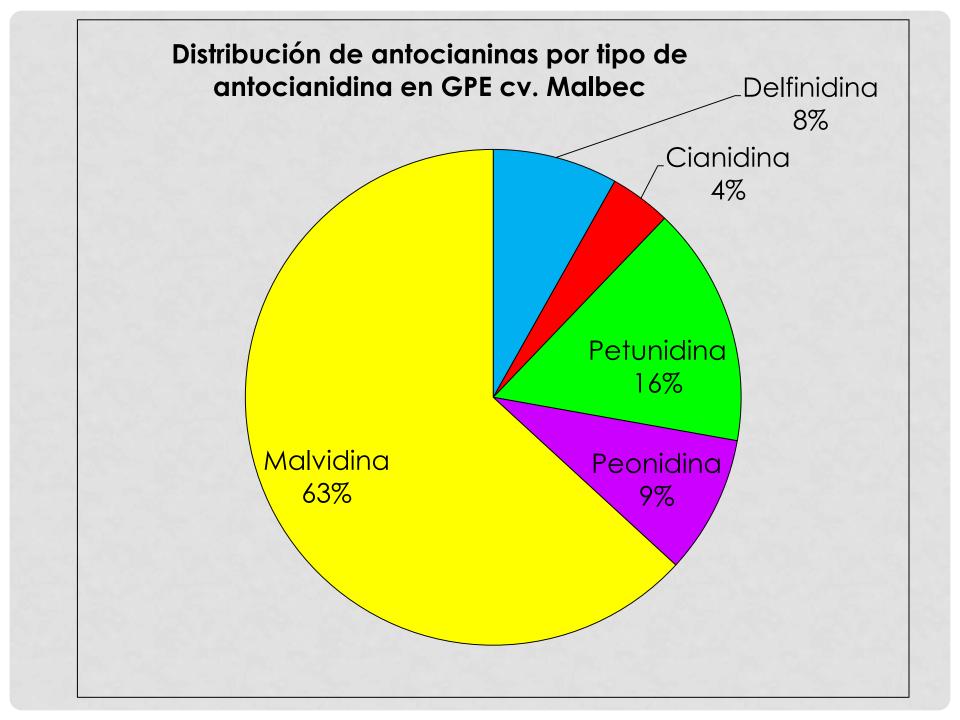
Análisis

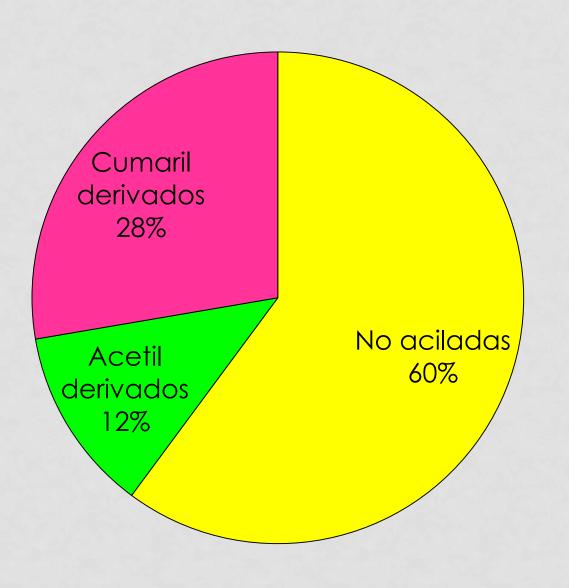

Pruebas

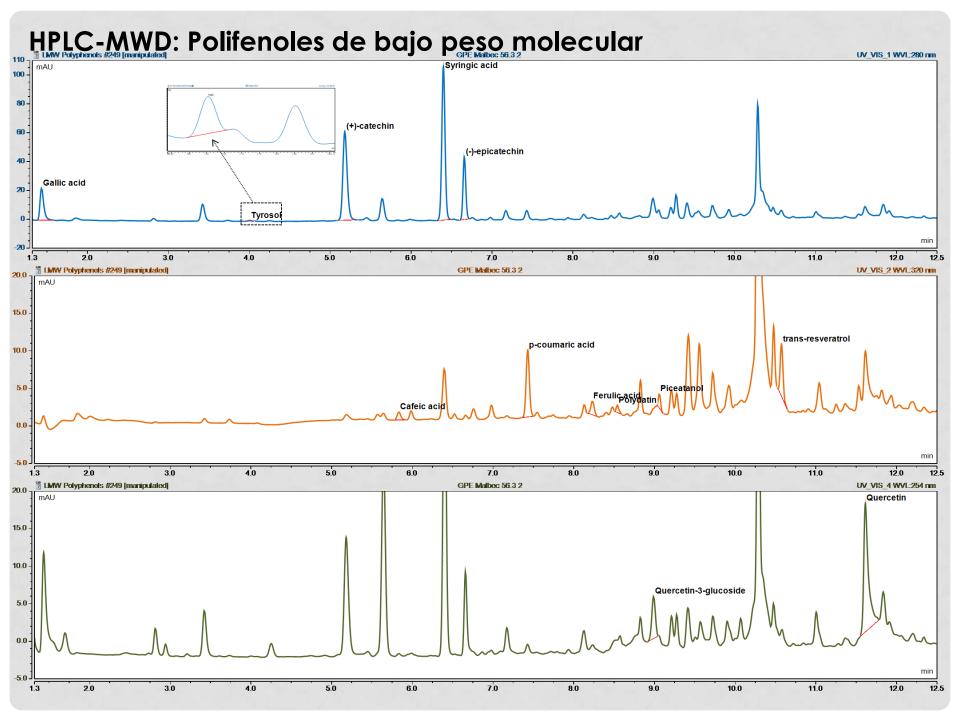
Rendimientos de extracción y TPC en extracto de orujo, y TPC en orujo cv. Malbec

	Extracto de orujo	Orujo
Rendimiento total (g GPE 100 g ⁻¹ GP PS)	16,1 ± 3,1	
TPC GAE FC (mg GAE g ⁻¹ GPE ó GP)	196,2 ± 22,7	41,6 ± 2,1
TPC GAE 280 (mg GAE g ⁻¹ GPE ó GP)	165,7 ± 30,2	34,1 ± 3,1
Rendimiento en polifenoles (mg GAE g ⁻¹ GP PS)	31,6 ± 7,0	

ANÁLISIS FÍSICO-QUÍMICO DEL PERFIL DE METABOLITOS DE ORUJO Y SU EXTRACTO


Perfil de antocianos UPLC-MS


	Ref.	Rt	[M ⁺]	Antocianina identificada
	1	2.039	493	Malvidina-3-glucósido
	2	4.786	535	Malvidina-3-(6"- acetil)glucósido
	3	5.206	655	Malvidina diglucosido
	4	5.818	639	Malvidina 3-(6"-p- cumarilglucosido)
	5	1.286	479	Petunidina-3glucósido
	6	3.561	521	Petunidina 3-(6"- acetilglucósido)
	7	5.363	625	Petunidina 3-(6"-p- cumarilglucósido)
	8	0.936	465	Delfinidina 3 glucósido
	9	2.249	507	Delfinidina 3 -(6"- acetylglucósido)
	10	4.208	611	Delfinidina cumaril glucósido
	11	5.905	659	Delfinidina galloyl acetil glucósido
	12	1.776	463	Peonidina-3-glucósido
	13	4.488	505	Peonidina 3-(6''- acetilglucósido)
	14	6.290	609	Peonidina 3-(6"-p- cumarilglucósido)
^	15	1.146	449	Cianidina 3-glucósido
	16	3.141	517	Vitisin B


Composición de	antocianinas	en extracto d	de orujo	cv. Malbec
----------------	--------------	---------------	----------	------------

Antocianinas	μg g-1 GPE liofilizado		
	Media	SD	
Delfinidina-3-glucósido	4580,55 ±	8,35	
Cianidina-3-glucósido	869,96 ±	26,23	
Petunidina-3-glucósido	6880,47 ±	107,58	
Peonidina-3-glucósido	2460,04 ±	54,87	
Malvidina-3-glucósido	26657,97	193,22	
Total glucosiladas	41448,98		
Delfinidina-3-(6"-acetil)glucósido	1043,14 ±	8,05	
Petunidina-3-(6"-acetil)glucósido	1423,81 ±	41,27	
Peonidina-3-(6"-acetil)glucósido	1902,37 ±	28,90	
Malvidina-3-(6"-acetil)glucósido	4021,19	101,53	
Total acetiladas	8390,51		
Cianidina-3-(6"-p-cumaril)glucósido	1885,76 ±	6,19	
Petunidina-3-(6"-p-cumaril)glucósido	2481,19 ±	62,63	
Peonidina-3-(6"-p-cumaril)glucósido	1853,73 ±	84,07	
Malvidina-3-(6"-p-cumaril)glucósido	12863,86	384,28	
Total cumariladas	19084,53		
Total antocianinas	68924,03		

Niveles de polifenoles de bajo peso molecular en extracto de orujo cv. Malbec

compuesto	μg g ⁻¹ GPE liofilizado		compuesto μg g ⁻¹ GP		PE liofilizado	
Ácidos hidroxibenzoicos	Media	DE	Flavanoles	Media	DE	
Ácido gálico	252,81 ±	18,52	(+)-catequina	3387,47 ±	374,74	
Ácido siríngico	1731,69 ±	156,25	(-)-epicatequina	1763,37 ±	221,8	
total ácidos hidroxibenzoicos	1984,50		total flavanoles	5150,84	,-	
Ácidos hidroxicinámicos				3130,04		
Ácido cafeico	15,99 ±	2,59	Flavonoles			
Ácido p-cumárico	64,56 ±	5,25	Quercetin-3-glucósido	112,16 ±	12,11	
Ácido ferúlico	24,06 ±	1,13	Quercetina	557,34 ±	83,85	
total ácidos hidroxicinámicos	104,61		total flavonoles	669,5		
Estilbenos			Otros compuestos			
Polic		DН	OH-Tirosol	5,09 ±	0,62	
Picea		DН	Tirosol	33,98 ±	2,69	
trans	HO		total otros compuestos	39,07		
total o _H	ОН		Total compuestos fenólicos	8035,53		
resveratrol	piceatannol					

Niveles de polifenoles de bajo peso molecular en orujo cv. Malbec

compuesto	μg g ⁻¹ GPE liofil	izado	compuesto	μg g ⁻¹ GPE liofilizado
Ácidos hidroxibenzoicos	Media	DE	Flavanoles	Media DE
Ácido gálico	18,13 ±	8,88	(+)-catequina	258,39 ± 28,85
Ácido siríngico	156,56 ±	6,55	(-)-epicatequina	173,21 ± 61,28
total ácidos hidroxibenzoicos	174.69		Procianidina B2	29,46 ± 13,06
Ácidos hidroxicinámicos			(-)-galato de epicatequina	253,42 ± 153,79
Ácido cafeico	7,04 ±	0,63	total flavanoles	722,14
Ácido p-cumárico	55,12 ±	2,86	Flavonoles	, ,
Ácido ferúlico	4,63 ±	0,31		12.60 . 0.27
total ácidos hidroxicinámicos	66,79		Camferol-3-glucósido	$12,60 \pm 0.27$
Estilbenos			Quercetina	$64,13 \pm 26.37$
Polidatin	n/d		total flavonoles	76.73
Piceatanol	n/d		Otros compuestos	
trans-resveratrol	2,14 ±	0,68	OH-Tirosol	n/d
total estilbenos	2,14		Tirosol	7,83 ± 0.76
			total otros compuestos	7,83
			Total compuestos fenólicos	1050,32

Terpenos y VOCs

ORUJO LIOFILIZADO

diclorometano

MTBE

ORUJO LIOFILIZADO

MTBE

GC-MS

ORUJO FRESCO

hexano MTBE

Terpenos y VOCs

Se ha detectado en el orujo fresco la presencia de al menos 19 compuestos orgánicos volátiles

De importancia biológica los terpenos nerolidol, copaene, escualeno, farnesol y fitol, y los compuestos fenil-etil alcohol, epimanoil óxido.

En orujo liofilizado se identificaron sólo 9 de estos compuestos. Se destacan: p-cimenol, nerolidol, farnesol, epimanoil óxido, fitol y mandenol

En el extracto de orujo de identificó fenil-etil alcohol, nerolidol, escualeno y fitol

Contenido de fibra dietaria en extracto de orujo y orujo cv. Malbec

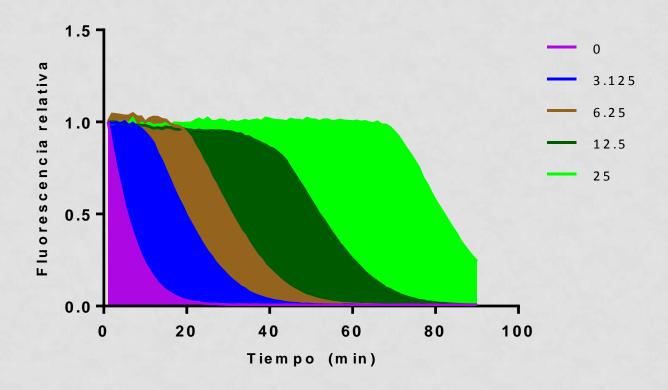
	Extracto de Orujo	Orujo
Fibra Dietaria Total	8.3 ± 0.1	53.5 ± 0.6
Fibra Dietaria Soluble	2.1 ± 0.1	2.7 ± 0.0
Fibra Dietaria Insoluble	6.2 ± 0.1	50.8 ± 0.5

% peso seco. Valor medio de las determinaciones ± desviación estándar, n=3

ACTIVIDAD ANTIOXIDANTE Y ACTIVIDAD ANTIPLAQUETARIA DEL ORUJO Y EXTRACTO DE ORUJO

Diluir de trolox y madres de orujo y exracto de orujo

Dispensar en las microplacas las diluciones de las muesras y trolox


Colocar a cada celda fluoresceína. Incubar a 37 ºC y adicionar AAPH

Colocar en fluorómetro y monitorear 485 nm excitación y 538 emisión cada 1 min

Evolución en el tiempo de la reacción de la fluoresceína con AAPH en ausencia (0) y en presencia de distintas concentraciones de Trolox (3,125; 6,25; 12,5 y 25 μ M).

ENSAYOS IN VITRO

Actividad antiplaquetaria

2,4 mg de GPE mL⁻¹ sangre completa produjo el 100 % de inhibición

IC₅₀ 1,55 mg GPE mL⁻¹ sangre completa

Actividad antioxidante

ORAC (µmol TE g-1)

Orujo

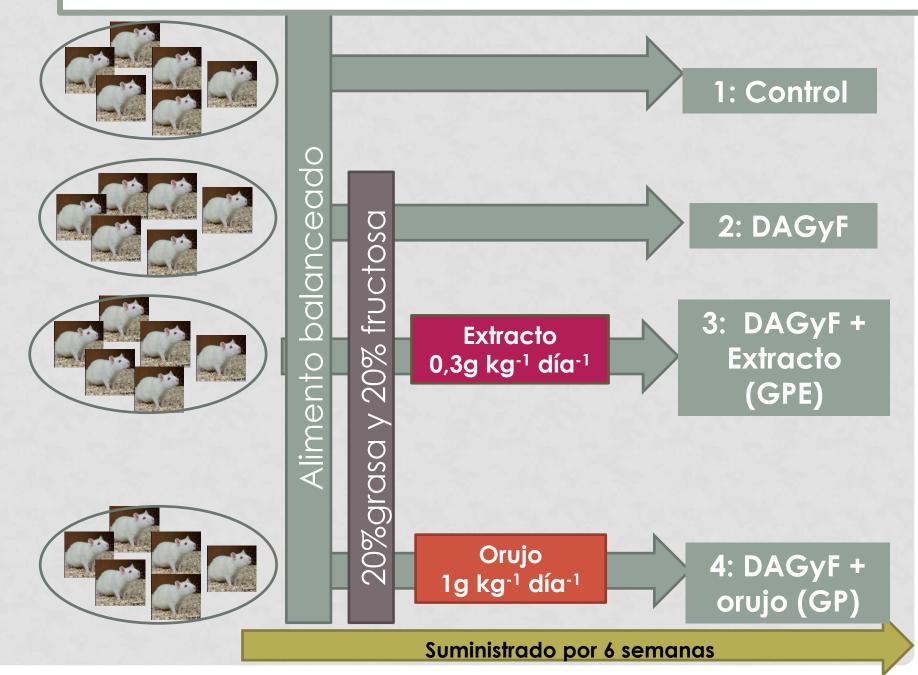
 $258,10 \pm 31,94$

Extracto de $2756,04 \pm 109,05$

Orujo

PROTECCIÓN CARDIOVASCULAR EN RATAS CON SÍNDROME METABÓLICO

PRUEBAS BIOLÓGICAS



Variables asociadas al síndrome metabólico.

Trabajo en colaboración FCM: Dr. Miatelllo

SÍNDROME METABÓLICO (MS)

TATINABIAN DATOS DE OTRA DOSIS DE GPETOO HIS que no fuero PUBLICADOS...

Parámetros metabólicos en ratas

Parámetro	Ctrl	HFF	HFF + GPE	HFF + GP
Ingesta de comida (g d-1)	23.5 ± 1.1	23.1 ± 0.6	20.6 ± 0.5	20.3 ± 0.8
Ingesta de agua (mL d ⁻¹)	40,3±2,1	35,3±0,9	33,7±0,9	34,1±1,59
PAS mmHg	$107\pm3^{\text{a}}$	135 ± 5^{b}	121± 3 ^{a,b}	$119\pm4^{\mathrm{a}}$
Peso corporal (g)	320 ± 7 ^a	383 ± 13 ^b	$348 \pm 9^{\text{a,b}}$	$354 \pm 14^{a,b}$
Glucemia (mg dL ⁻¹)	92.7 ± 4.7	88.2 ± 3.3	88.7± 2.5	95.8 ± 1.6
Triglicéridos (mg dL ⁻¹)	$120\pm4^{\text{a}}$	154 ± 5 ^b	137± 4 ^{a,b}	$132\pm8^{\text{a}}$
Colesterol HDL (mg dL ⁻¹)	$30.4\pm2.6^{\text{a,b}}$	$23.3\pm1.7^{\text{b}}$	36.3± 1.7ª	$33.7 \pm 2.6^{\text{a}}$

Parámetros metabólicos de ratas alimentadas durante 6 semanas con dieta control o con dieta alta en grasa y fructosa (HFF) con y sin el agregado de GPE (HFF+GPE 300 mg Kg-1 d-1) o GP (HFF+GP 1g Kg-1 d-1). Valores medios \pm DE (n=6 por grupo). Valores con diferentes superíndice son significativamente diferentes (P < 0.05, ANOVA de un factor).

Review

pubs.acs.org/JAFC

Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics

Ariel R. Fontana,* Andrea Antoniolli, and Rubén Bottini

Food Chemistry 178 (2015) 172-178

Contents lists available at ScienceDirect

Food Chemistry

journal homepage: www.elsevier.com/locate/foodchem

Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec

Andrea Antoniolli, Ariel R. Fontana*, Patricia Piccoli, Rubén Bottini

Food Chemistry 192 (2016) 1-8

Contents lists available at ScienceDirect

Food Chemistry

journal homepage: www.elsevier.com/locate/foodchem

Analytical Methods

Development of a high-performance liquid chromatography method based on a core-shell column approach for the rapid determination of multiclass polyphenols in grape pomaces

Ariel R. Fontana*, Andrea Antoniolli, Rubén Bottini

Presentar bases científicas que permitan la utilización de los residuos de vinificación como una fuente económica y sustentable de principios activos para su aplicación en diferentes industrias de base tecnológica

Food & Function

PAPER

Cite this: Food Funct., 2016, 7, 1544

Grape pomace and grape pomace extract improve insulin signaling in high-fat-fructose fed rat-induced metabolic syndrome

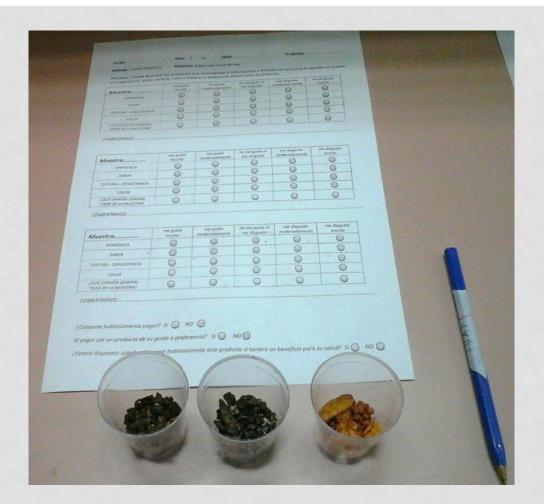
Cecilia Rodriguez Lanzi,^a Diahann Jeanette Perdicaro,^a Andrea Antoniolli,^b Ariel Ramón Fontana,^b Roberto Miguel Miatello,^a Rubén Bottini^b and Marcela Alejandra Vazquez Prieto*^a

Food & Function

Accepted Manuscript

Grape pomace reduced reperfusion arrhythmias in rats with a high-fatfructose diet

Diahann J. Perdicaro¹, Cecilia Rodriguez Lanzi¹, Ariel R. Fontana², Andrea Antoniolli², Patricia Píccoli², Roberto M. Miatello¹, Emiliano R. Diez¹, Marcela A. Vazquez Prieto¹.



CONCLUSIONES

Los compuestos volátiles con actividad biológica determinados, la fibra dietaria, sumados a la caracterización de los compuestos fenólicos contribuyen a dar sustento a los efectos biológicos observados en ratas con SM.

El consumo de alimentos enriquecidos con orujo de uva Malbec o su extracto puede ser útil en la prevención o atenuación del MS o enfermedades asociadas.

Estos resultados refuerzan la utilización de los extractos de orujo y del orujo de uva cv. Malbec como nutracéuticos en la industria alimenticia o farmacéutica.

APLICACIONES EN ALIMENTOS

GRACIAS POR SU ATENCIÓN