
MISSION CRITICAL DESIGN REVIEW

SECTION: 02A Mision Overview and Science Requirements

Carolina Tauro, CONAE

SABIA-Mar

Objectives

Mission main objective and description

Cameras and spectral bands

Products main characteristics

Objectives

AE SABIA-Mar Mission main objective and description Products main characteristics Users and added value products

Objectives

- Introduce the SABIA-Mar Mission, its main objectives and goals, as well as its main characteristics (orbit, revisit, spectral bands, etc).
- Describe the SABIA-Mar mission products, its users and applications.
- Review the key driver science requirements.

Reference documents

SB-040000-RQ-00400-C - SABIA-Mar L1 and L2A Requirements Baseline Document (17/03/2022)

©2023 COM

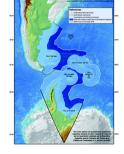
TAE SABIA-Mar Mission main objective and description

Products main characteristics

Users and added value products

Section 02A - Mision Overview and Science Requirements SABIA-Mar Mission Critical Design Review - April 2023

SABIA-Mar mission in context



SABIA-Mar is a satellite mission mainly focused in ocean color studies. It was born as a great contribution to regional coastal studies in the framework of...

- Argentinian National Space Plan.
- SAC-D/Aquarius mission continuity.
- Argentinian Pampa Azul initiative.
- Sustainable Development Goals contribution.
- International Ocean Color and climate change communities.

SABIA-Mar Mission Summary

Mission Scenarios (required)

Ragional: coastal zone of South America coming to about 650 km offshore, in addition to Inland Waters in South America, with spatial resolution of 200m. For regional studies and monitoring of Vitória-Trindade Ridge and Malvinas Islands regions 1000 km coverage is requested.

Global: geographical coverage in latitude shall be 140 degrees (~ ±70 latitude) with seasonal changing limits, at a 800m of spatial resolution.

AE SABIA-Mar Mission main objective and description

Cameras and spectral bands

Products main characteristic

SABIA-Mar Cameras

Main Cameras:

- VIS-NIR: optical and near infrared camera (412-865nm), 200m (regional) and 800m (global) spatial resolution at nadir, swath 1495km.
- NIR-SWIR: near infrared and short wave infrared camera (750-1640nm), 400m spatial resolution at nadir (only regional), swath 1495km.

Secondary Instruments:

- ► **HSC**: pancromatic High Sensitivity Camera for night lights detection
- DCS: Data Colection System, is an UHF receiver on board, ARGOS compatible, to collect data coming from ground platforms.
- AGR-T (Austral GNSS Receiver
 Technological): technological payload
 compatible with the on-board computer.
 The aim of the project is to develop a high
 reliability Global Navigation Satellite System
 (GNSS) receiver for low earth orbit (LEO)
 satellite missions.

SABIA-Mar spectral bands (required)

	Camera	Swath	Band	λ ₀	FWHM	GSD		L _{typ}	L _{max}	S/N*	
	Can	S		[nm]	[nm]	Regional [m]	Global [m]	$[W m^{-2}]$	µm ⁻¹ sr ⁻¹]**		
			В0	412	10	200	800	79	602	1000	١
			B1	443	10	200	800	68	664	1000	
			B2	490	10	200	800	52	686	1000	b
			B3	510	10	200	800	45 🚺	663	1000	
	\cong	Ε	B4	555	10	200	800	34	643	1000	
	Z	1496km	B5	620	10	200	800	34 21	570	1000	
	VIS/NIR	146	B6	665	10	200	800	16	536	1000	
			B7	680	7.5	200	800	15	517	1500	
			B8	710	10	200	800	12	489	1000	
			B9 [†]	750	10	200	800	10	447	600	
			B11 [†]	865	20	200	800	5.9	333	400	
			B9 [†]	750	10	400	-	10	447	600	
റ	NIR/SWIR	1495km	B10	765	10	400	-	7.8	430	600	
			B11 [†]	865	20	400	-	5.9	333	400	
			B12	1044	20	400	-	3.7	236	400	
			B13	1240	20	400	-	0.88	158	250	
			B14	1610	60	400	-	0.29	82	250	
		E				[nW/ ² /sr]**					
	HSC	700km	BHSC	400-700	300	400	-	20	1800	10	

[†] Bands 9 and 11 are repeated in both cameras.

^{* @}L_{Tvp} at GSD:1000 m.

Spectral bands and applications

Band	λ [nm]	Δλ [nm]	Coastal [m]	Global [m]	Applications	
В0	412	10	200	800	Coloured Dissolved Organic Matter,Chl separation	
B1	443	10	200	800	800 Chl-a Absorption maximum, band ratio for Chl-a retrieval	
B2	490	10	200	800		
В3	510	10	200	800		
B4	555	10	200	800	Bio-optical algorithms (e.g. band ratio Chl), turbidity	
B5	620	10	200	800	Cyanobacteria, suspended sediment phycocyanin, Turbidity	
B6	665	10	200	800	Chl-b, baseline of fluorescence signal, Turbidity	
B7	680	7.5	200	800 🖠	Chl- a Fluorescence line peak	
B8	710	10	200	800	FLH baseline, HABs, Chl in highly turbid water,	
					turbid water atmospheric correction	
B9	750	10	200/400	800	Atmospheric correction open ocean	
B10	765	10	400	-	- Atmospheric correction open ocean, aerosol altitude,	
		1			molecular absorption. Cloud altitude and screening	
B11	865	20	200/400	800	AC open ocean, water vapor reference over the ocean, Turbidity	
B12	1044	20	400	-	Atmospheric correction turbid water, Turbidity	
B13	1240	20	400	-	Atmospheric correction turbid water, Turbidity	
B14	1610	60	400	-	Atmospheric correction turbid water	
_{Mar} HSC	400-700	300	400	-	Boat night light detection	

TAE SABIA-Mar Mission main objective and description

Products main characteristics

Products summary

SABIA-Mar will **operative produce the required products**, which are the main mission products:

- ▶ Ocean Color (VIS-NIR & NIR-SWIR): $[L_w]_N$, Chl-a, FHL, K_d (490), Turbidity, PAR.
- Night boats detection (HSC)
- Products will be generated in netCDF4 format with CF and ISO metadata.
- Levels of processing that will be generated: L0, L1, L2 and L3.
- ▶ L1, L2 and L3 will be available for free in the website.

Other instruments cases:

- DCS: only LO+ (divided by platform). The data will be distributed to the users that install the ground platforms.
- AGR-T: it has no science products, it generates data for technological demonstration. Developed by: La Plata University.

Products levels summary (required)

11 Products:

- L1A: Raw and geolocation data.
- L1B: TOA radiance/reflectance.
- Calibrations methods planned: Lunar, solar, vicarious, cold sky, side-slither.
- Files: Granules of 5 minutes
- Native spatial resolution: 800m Global. 200/400m Regional.

12 Products:

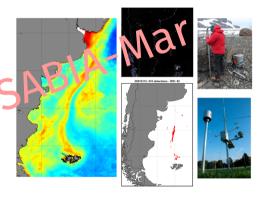
- Normalized Water Leaving Radiance and Remote Sensing Reflectance, Chlorophyll-a concentration, FHL, Turbidity, Kd(490), PAR, night boat detection.
- Chl-a and HSC available in Near Real Time for Argentinian sea.
- Files: Granules of 5 minutes.
- Native spatial resolution.

L3 Products:

- All L2 variable will be aggregated.
- Binned and mapped format. Temporal:Daily, 8-days, monthly,
- seasonal Spatial resolution Regional: 460m
- Spatial resolution Global: 2.32 and 4.6km.
- Each product in separated file.

AE SABIA-Mar Mission main objective and description

Products main characteristics



Users and Applications

- Government institutions and Decision makers (INIDEP, SMN, SHN, INA, PNA, AA, IAA, etc).
- Sistema productivo (blue economy, tourism, etc.).
- National scientific-technological and education system (Pampa Azul, CONICET, IADO, IAFE, CENPAT, UNS, UNC, CADIC, etc).
- International Ocean Color and Climate Charge communities.
- ► HSC users: INIDEP, PNA, AA
- DCS users: INA, La Plata University and INTI for meteorological measurements, penguins, seals and petrels tracking.

Chlorophyll-a concentration (MODIS), night light from boats (VIIRS),
Data Collection System.

Potential value-added Applications

- Surveillance and navigation support.
- Fisheries and aquaculture.
- Health: toxic algae blooms, water quality, coastal sediments.
- Emergencies.
- Ocean circulation and dynamic.
- Climate change and global tranding.

Based on MODIS images.

SABIA-Mar users comunity

