

BOLETIN

DE LA

socirndil SISIIOLOGLCI SID－IIDISI

PUBLICADO BAJO LA PROTECCIÓN DE LOS GOBIERNOS DE SAN JUAN Y DE MENDOZA

DIRECCIÓN－Luis Jorge Fontana．－Galdino Negri．－Juan Nicolás Peralta．－Pablo A．Loos．－Virgilio Raffinetti．－ Avelino Castro．

ADMINISTRACIÓN CENTRAL EN MENDOZA
相相品
 Libertad y Espejo

GERÓNIMO Z LESI－Una memorable granizada en Montevideo
\qquad
SAN JUAN ralleres gráficos de la círcel pública 1914

Elenco de Socios Fundadores

Nacionales y Extranjeros
(PRIMER AÑO SOCLAL DE 1910)

SOCIOS HONORARIOS
Dr. Roque Sáenz Peña
Excmo. Presidente de la Nación Argentina
Dr. Victorino de la Plaza
Excmo. Vice Presidente de la Nación Argentina
Teniente Gra1. D. Julio \&. Roca
Excmo. Ministro Plenipotenciario Argentino en el Brasil
Monseñor José Américo Orzali
Ilustrísımo Obispo de la Diócesis de Cuyo
Dr. Joaquin V. González
Honorable Senador Nacional
Rector de la Universidad de La Plata
Dr. William J. Mussey
Director del Observatorio Astronómico de La Plata
y Presidente Honorario de la Sociedad Sismológica Sud-Ándina

Dr. Conde Fernando de Montessus de Ballore
Jefe del Servicio Sismológico de la República de Chile
Dr. F. Omori
Director del Servicio Sismológico del Imperio del Japón

Dr. Iuis Palazzo

Director del Real Oficio Central de Meteorologia
y Geodinámica del Reino de Italia

Dr. José Comas Solá

Director del Observatorio Astronómico de Fabra (España)

Abate Th. Moreux

Director del Observatorio Astronómico de Bourges-(Francia)

Dr. Federico Villarreal

Décano de la Facultad de Ciencias de la Universidad Mayor de San Marcos de Lima (Perú)

CATÁLOGO

De las registraciones sismológicas del observatorio geodinámico nacional de San Juan durante el año 1913, con observaciones de la Estación Sísmica de Mendoza y algunas noticias de provincias sud-andinas, de Chile y de otras naciones sud-americanas.

Latitud Sur. $31^{\circ} 22$
Constantes del Longitud Oeste $68^{\circ} 39^{\prime}$ observatorio Altura sobre el nivel del mar 663 m . Variación de la aguja 13° Este

ENERO

Dia 5 Temblor comenzó á las 10 horas, 59 minutos a. m. Duración 1 minuto. Dirección S. E. Intensidad 3. No fué sentido.

Dia 6 A h. 8 a. m. Duración 1 minuto 30 segundos. Dirección S. E. Intensidad 2. No fué sentido.

Dia 6 A h. $1 \mathrm{~m} .50 \mathrm{p} . \mathrm{m}$. Duración 7 minutos. Dirección S. E. Intensidad 6. Fué sentido.

Dia 6 A h. $6 \mathrm{~m} .19 \mathrm{p} . \mathrm{m}$. Duración 1 m . Dirección S. E. Intensidad 3. No fué sentido.

Dia 6 A h. $8 \mathrm{~m} .1 \mathrm{~s} .30 \mathrm{p} . \mathrm{m}$. Duración 1 m .30 s . Dirección S. E. Intensidad 3. No fué sentido.

Dia $8 \mathrm{~A} \mathrm{h} 3 \mathrm{~m} .46 \mathrm{p} .$.m . Duración 1 m .30 s . Dirección S. E. Intensidad 4. No fué sentido.

Los temblores de Diciembre y Enero son de propagación macrosísmica de N. á S., consecuencia de deshielos de la Cordillera. Los ríos han crecido.

Dia 12 A h. 1 m. 23 s. 30 a. m. Duración 14 m. 20 s. Dirección N. W. Intensidad 6. No fué sentido.

Dia 12 A h 1 m .46 s .10 a. m. Duración 40 s . Direcció S . W. Intensidad 1 . No fué sentido. Microsismo.

Dia 12 A h. $1 \mathrm{~m} .23 \mathrm{~s} .30 \mathrm{p} . \mathrm{m}$. Duración 14 m .20 s. Dirección N. W. Intensidad 6.

Dia 21 A h. 2 m .33 a. m. Duración 3 m . Dirección Intensidad 3. Fué sentido.

Dia 21 A h. $12 \mathrm{~m} .40 . \mathrm{s} .30 \mathrm{~m}$. Duración 3 minutos. Dirección N. W. Intensidad 2. No fué sentido

Dia 21 A h. $1 \mathrm{~m} .55 \mathrm{p} . \mathrm{m}$. Duración 4 min . Dirección Intensidad 3. No fué sentido por personas. Hace mucho tiempo que no se producia un diagrama con fase preliminar.

Dia 24 A h. 8 m. 2. s. 30 p. m. Duración 3 min .30 s. Dirección N. Intensidad 2. No fué sentido.

Dia 25 A h. 6 m .8 s.-p. m. Duración 30 segundos. Dirección N. W. Intensidad 3. No fué sentido. A horas 6 min. 14 se produjo un microsismo.

Dia 26 A h. 6 m .6 s .30 . Duración 1 min .31 seg . Dirección W. Intensidad 2. No fué sentido.

Dia 27 A h. $6 \mathrm{~m} 29 \mathrm{seg} .30 \mathrm{a} . \mathrm{m}$. Duración 2 min . Dirección E. Intensidad 4. Fué sentido. Durante la noche de este día 4 microsismos de la misma dirección.

FEBRERO

Dia 5 A h. 11 m .38 s .-a. m. Duración 3 min . Dirección N. W. Intensidad 6. Amplitud de la C. E. w. 6 mm . y la duración en esta misma C. m. 1 s. 30. El temblor tuvo dos fuertes remezones que causa ron pavor en las gentes que corrieron á los patios, calles y plazas.

Parece que este temblor fuerte se venia preparando desde ayer (dia 4) á horas 6 minutos 31 a. m . en que se produjo un movimiento netamente susultorio que no fué sentido por personas, pero si registrado por el sismógrafo con un punto bien visible en la Comp. N. S. y gran repiqueteo en la campanilla del Sismoscopio Susultorio y muy corto aviso del Sismoscopio-Ondulatorio, prueba evidente de que estos 3 aparatos son buenos registradores. Esta circunstancia me causó mucha satisfacción personal, pues me encontraba con los aparatos á la vista en dicho momento. En el mismo momento se sentían rumores en las montañas.

El mismo dia (5) se produjo un pequeño temblor á la h. 7 m .20 s. -a. m. y otro pequeño á h. 10 m .54 s. 30 .

Dia 6 A h. 7. m. $54 \mathrm{~s} .-\mathrm{p} . \mathrm{m}$. Duración 1 min . Dirección N. Intensidad 1 . No fué sentido.

Dia 10 A h. 5 m -s.-p. m. Duración 1 min . Dirección N. Intensidad 2. Instrumental.

Dia 13 A h. $3 \mathrm{~m} .15 \mathrm{~s} .-\mathrm{p} . \mathrm{m}$. Duración 2 min . Dirección. Intensidad 2, Fué sentido. Este movimiento netamente susultorio, así es que la dirección solo puede apreciarse del E. en la Comp. E. w. mientras que en la Comp. N. S. la amplitud lateral de las ondas era igual en todas.

Dia 16 A h .10 m .14 s .30 á. m. Duración 31 seg . Dirección N. Intensidad. No fué sentido.

Dia 28 A h. $9 \mathrm{~m} .18 \mathrm{~s} .-\mathrm{a} . \mathrm{m}$. Duración 1 min . Dirección N. w. Intensidad 2. No fué sentido. Gran bramido en las montañas próximas.

MARZO

Dia 14 A h. $9 \mathrm{~m} .46 \mathrm{~s} .-\mathrm{p} . \mathrm{m}$. Movimiento susultorio.
Día 19 A h.-m. 1. s. 30 a. m. Duración 5 min .30 s . Dirección N. Intensidad 3. Instrumental.

ABRIL

Dia 5 A h. $12 \mathrm{~m} .54 \mathrm{~s} .-\mathrm{p} . \mathrm{m}$. Duración 2 min .30 s. Dirección E. S. Intensidad 2. Instrumental.

Dia 11 A h. 8 m .39 p. m. Duración 2 min . Dirección N. w. Intensidad 4 fué sentido.

MAYO

Día 1 A h. 3 m. 23 s. 30 a. m. Duración 7 m .30 s . Direc ción S. w. Amplitud $25 \mathrm{~m} . \mathrm{m}$. Intensidad 3

Día 20 A h. $3 \mathrm{~m} .33 \mathrm{~s} .30 \mathrm{a} . \mathrm{m}$. Duración 30 seg . Dirección S. w. Intensidad 2 Amplitud 2 mm .

Día 24 A h. 7 m. -s. $30 \mathrm{p} . \mathrm{m}$. Duración 12 m .30 s . Dirección N. w. Intensidad 5 Amplitud máx. 66 mm . Según cálculos hechos el epicentro está comprendido entre 275 y 399 km . no fué sentido. Presión atmosférica baja.

JUNIO

Día 3 A h. 3 m. 12 s. 30 a m. Duración 2 min. Dirección S. w. Intensidad 3. Amplitud máxima 1 mm .

Día 16 A h. $1 \mathrm{~m} .33 \mathrm{p} . \mathrm{m}$. Duración 3 min .30 seg . Dirección N. W. Intensidad. Fué sentido.

Dia 16 A h. $3 \mathrm{~m} .5 \mathrm{p} . \mathrm{m}$.

Día 19 Varios microsismos entre 11 a m. y $6 \mathrm{p} . \mathrm{m}$. Día 26 A h. $9 \mathrm{~m} .12 \mathrm{~s} .-\mathrm{p} . \mathrm{m}$. Duración 30 seg . Dirección N. w. Amplitud máx. 1 mm .

Día 27 A h. 8 m. 50 s.-a. m. Duración 20 seg. Dirección N. w. Instrumental.

Dia 27 A h. $4 \mathrm{~m} .10 \mathrm{p} . \mathrm{m}$. Muy pequeño. Instrumental.

JULIO
Dia 10 A h. $8 \mathrm{~m} .15 \mathrm{~s} .-\mathrm{a} . \mathrm{m}$. Duración 1 min . Dirección S. w. Amplitud máx. 3 mm . Fué sentido.

Dia 12 A h. 2 a m, microsismo.
Dia 18 A h. 11 p. m. Temblor leve.
Dia 24 A h. 12 m . Temblor del Norte.

AGOSTO

Dia 1 A h. 4 p. m. Microsismo.
Dia 2 A h. 12 m. 34 s. 30.
Dia 6 Varios microsismos.
En los dias 14,15 y 16 muchos microsismos también anunciados por las campanillas de los sismoscopios susultorios y ondulatorios.

Dia 16 A h. 8 m .12 am. temblor del N.w.
Dia 17 A h. 10 m .41 á. m. Temblor fuerte del S.
Dia 19 A h. 12 m .34 s .30 á. m. Temblor fuerte del S. E.

Dia 20 A h. 8 m. 42 s. 18. a. m. Microsismo.
Dia 21. A h. $6 \mathrm{~m} .57 \mathrm{~s} .-\mathrm{p} . \mathrm{m}$. Microsismo.

SETIEMBRE

Dia 26 A h. 2 m.-s.-a. m. Duración 2 min. Dirección N. w. Desviación de la Comp. N. S. 2,5 mm.

Dia 26 A h. $3 \mathrm{~m} .-\mathrm{s} .-\mathrm{a} . \mathrm{m}$. Duración 3 min .30 s. Dirección N. w. Amplitud máx. 10 mm .

Dia 30 A h. 12 m .18 . Duración Comp. E. w. 4 min. 30 seg . Comp. N. S. 3 min .30 seg . Amplitud máx. 3 mm .

OCTUBRE

Dia 8 A h. $9 \mathrm{~m} .20 \mathrm{~s} .-$ p. m. Duración 30 seg. Di. rección N. E. Amplitud máx. 1 mm .

Dia 14 A h. $2 \mathrm{~m} .32 \mathrm{~s} .30 \mathrm{p} . \mathrm{m}$. Duración 8 min .30 seg. Dirección N. (w). Amplitud máx. 18 mm . Distancia epicentral calculada 918 km .

Dia 20 A h. 10 m. 38 s.-p. m. Duración 3 min. Dirección N. w. Fué sentido. Amplitud máx. 40 mm .

Dia 23 A h. 1 m .39 s .-?
Dia 25 A h. 8 m .19 s. 30 a . m. Duración 8 min . Dirección N. w. Intensidad 3. Amplitud máx. 8 mm . No fué sentido.

Característica del sismograma. Comp. E. W.-Presenta un primer sacudimiento de duración de 60 seg.; se distinguen dos choques, uno del w. y de amplitud máxima de 0 . ${ }^{m} 005$, el segundo del Este, mayor que el anterior, de amplitud de $0 . \mathrm{m}^{\mathrm{m}} 0055$, desviando más la pluma hácia el E. Terminado este sacudimiento reinó calma sísmica y después de 4 jo seg. se produjo el mayor movimiento, siendo esta componente en sus primeros choques desviada hácia el w. Su mayor desvio de la linea recta que sigue la pluma en estado de reposo es do 0 . m 006 . Se ven facilmente 8 oscilaciones fuertes con intervalos suficientemente largos que permiten contarlas. En esta componente predomina la dirección w. E. Existen ademas dos ondas de amplitud máxima de $0 .{ }^{\mathrm{m}} 008$ con us intervalo de 30 seg . Duración total 5 min .30 seg . Comp. N. S. Presenta como en el caso anterior un primer sacudimiento hácia el N. desviándose de la recta $0 \stackrel{\mathrm{~m}}{\mathrm{~m}} 0035$ que es su amplitud máxima, duración 60 segundos. Después de un intervalo de 30 seg . se produjo el movimiento fuerte siendo la duración entre el comienzo de este movimiento y la onda maxima de 60 seg . Se pueden notar 9 choques ma yores con intervalos de 75 seg . del $1 .{ }^{\circ}$ al $2 .^{\circ}$ y de 3 min . 15 seg . del $1 .^{\circ}$ al último. Amplitud máxima $0 . \mathrm{m} 0065$. Predomina la dirección N. S. Duración total 8 min .

Dia 29 A h. $6 \mathrm{~m} .41 \mathrm{~s} . \mathrm{p} . \mathrm{m}$. Duración 3 min .15 s. Dirección N. E. Intensidad 2. Amplitud máx. 32 mm . Distancia epicentral: Local. No presenta fase preliminar. Dos sacudimientos que fueron sentidos por muchas personas, Predomina la dirección w. E. siendo en esta componente el diagrama de mayor amplitud que en la componente N. S. (amp. máx. 12 mm .) Este sismograma tiene mucha semejanza con el del día 20 del corriente, siendo el anterior mayor y no presentando tampoco fase preliminar.

Día 31. A h. $1 \mathrm{~m} .39 \mathrm{~s} .30 \mathrm{p} . \mathrm{m}$. Temblor suave.

NOVIEMBRE

Dia 4 A h. 11 m .18 s. a. m.' Duración 2 min . La comp. N. S. registró dos sacudimientos con intervalos de

1 m .15 seg . uno del otro, fué sentido por muchas personas en este departamento y en la ciudad.

Dia 4 A h. $8 \mathrm{~m} .3 \mathrm{p} . \mathrm{m}$. Duración 2 min .30 seg . Un solo sacudimiento; fué sentido por muchas personas Dia 6 A h. 2 m. 4 p. m.
Dia 9 A h. 9 m. 2 s. 45 a. m. Duración 10 min . Dirección N. w. Amplitud máx. 40 mm . Distancia epicentral 1308 km . No fué seutido

Dia 9 A h. 9 m .45 a. m. Pequeña desviación.
Dia 9 A h. $2 \mathrm{~m} .2 \mathrm{~s} .15 \mathrm{p} . \mathrm{m}$. movimiento de aspecto susultorio. No fué sentido.

DICIEMBRE

Durante este mes, los aparatos del observatorio sis mico de San Juan no registraron ningún movimiento.

Noticias de los corresponsales

Las observaciones de Junin de Mendoza pertenecen al distinguido Presbítero don Carlos J. Gillet

Junin de Mendoza, Enero 22. A las 10 y 41 minutos se sintió un sacudimiento. Dirección Este Oeste.

Junin de Mendoza, Enero 27. A h. 6 min. 45 a. m. dos sacudimientos. Dirección de Este á Oeste.

Junin de Mendoza, Febrero 13. A h. 3 m .10 p. m. Un temblor de 2 segundos de duracióa. Dirección de Este á Oeste. Ruido subterráneo como un cañonazo lejano.

Santiago de Chile, Abril 21. A las 11 de anoche se sintió un recio temblor en Santiago y en Valparaiso que se extendió hasta el puerto de este nombre, con más intensidad. La gente que estaba en el teatro fué presa de pánico.

Después se declaró un fuerte temporal en la parte central del pais.

La Rioja (ciudad). Junio 3. A h. 3 m. 25 a. m. Tem

$$
-177-
$$

blor durante 3 segundos acompañado de un ruido subterráneo, especie de bramido.

La Rioja (ciudad). Junio 11. A h. 7 a. m. Un golpe de abajo hácia arriba.

Santiago de Chile. Julio 10. Ayer, en Corral, á las 10 de la mañana, se sintió un fuerte temblor de tierra que causó alarma en la población. La duración fué de 25 segundos.

El gran terremoto en el Perú (6 de Agosto)

Ya hemos mencionado on el boletin $N .^{\circ} 5$ el gran terremoto del 6 de Agosto que causó tan terribles estragos en el Perú. Apuntamos todavia más detalles.

Lima, Agosto 8. Sintióse un fuerte sacudimiento en la costra terrestre que en el Sur del pais adquirió proporciones de un terremoto.

En Arequipa fueron destruidos varios edificios; pero no ocurrieron desgracias personales.

En Caquibra solo quedaron en pié algunas paredes, todas las casas se desplomaron, quedando sepultadas bajo sus escombros numerosas personas.

De las provincias de Limoneros y Parinacochas comunican que el movimiento sísmico fué de consecuencias graves. Muchas aldeas quedaron totalmente destruidas.

Un comunicado oficial publicado por los diarios de la tarde del 8 de Agosto dice que el terremoto ha abarcado los departamentos de Arequipa, Ica y Ayacucho. Según los informes hay en las ciudades castigadas más de 10,000 personas \sin hogar.

El Intendente de Ica telegrafió al ministro del interior que en esa ciudad reina la desolación á causa de haber sido destruidos la mayor parte de sus edificios principales y perecido muchos de sus habitantes entre las ruinas de los mismos.

Un telegrama firmado por el orobernador de Ayacucho dice que esa región ha sido violentamente castigada por el movimiento sismico, habiendo sido arrasados algunos pueblos de esa jurisdicción.

El gobernador de Arequipa telografía al ministro del interior ámplios detalles acerca de la catástrofe, pidiendo refuerzos de tropas y policía para contener los merodeadores que, como en todos estos desgraciados sucesos aprovechan de las circunstancias. También ha pedido material sanitario y víveres en abundancia, así como carpas para alojar á los habitantes de las ciudades y pueblos que han sido destruidos.

En la región costera el temblor fué acompañado de violentos golpes de mar, quedando inundada gran parte de la misma.

Lima, Agosto 8. En la mañana de hoy han vuelto á sentirse algunos sacudimíentos terrestres en el Callao y en algunas otras poblaciones, pero sin producir desastres.

Lima, Agosto 9. Se siguen recibiendo noticias sobre los estragos que causó el último terremoto.

Ahora se sabe, que también destruyó el puerto de Atico.

Santiago de Chile, Agosto 8. Iquique, durante el dia de ayer y anoche el tiempo fué anormal.

A las 5 de la tarde se sintió un fuerte y prolongado temblor. El fenómeno alcanzó hasta la Pampa y duró 55 segundos.

Felizmente, las construcciones de madera impidieron una catástrofe.

Sobre las observaciones de San Juan y La Plata véase el Boletin N. ${ }^{\circ} 5$

Junin de Mendoza, Setiembre 26. A h. 3 a. m. temblor, 3 sacudimientos (suave, fuerte, suave). Duración 45 segundos. Dirección Norte Sur.

Santiago de Chile, Octubre 3. A la una de la tarde se sintió un sacudimiento de tierra en esta capital al que siguió un fuerte y prolongado temblor que alcanzó solo á producir alarma.

El fenómeno se extendió desde Valparaíso y Santiago al Sur.

Buenos Aires, Octubre 22. En el observatorio de La Plata se ha registrado un temblor á 1700 kilómetros de distancia.

Lima, Noviembre 22. Telegramas fechados el viernes informan que continuan los fuertes temblores en Chalhuanca y Andahuaylas.

Lima. Diciembre 29. Se ha sentido otro terremoto on Aimaraes que causó tres muertos.

Varias casas quedaron destruidas y los caminos y la via del ferrocarril iniransitable.

Observaciones sismológicas del observatorio de Mendoza por el señor profesor Ricardo Faikosch.

ENERO DE 1913

Dia 7 A h. 4 p. m. Irregulares ondas largas, durante 8 minutos, de amplitud de 3 mm .

Dia $10 \mathrm{~A} \mathrm{~h} .4 \mathrm{~m} .14 \mathrm{p} . \mathrm{m}$. Se registró una perturbación especial á ondas largas irregularos; siguen á continuación, durante 2 horas, ondas largas de amplitud de 1 mm , especialmente en la faja N. S.

Dia 11 A h. 10 a. m. hasta las $11 \mathrm{a} . \mathrm{m}$. Ondas lar. gas de $1,5 \mathrm{~mm}$. de amplitud.

Dia $15 \mathrm{~A} \mathrm{~h} .2 \mathrm{~m} .44 \mathrm{p} . \mathrm{m}$. empiezan ondas largas que duran 1 hora; amplitud $1,2 \mathrm{~mm}$.

Dia 21 A h. 2 m. 44 s. 30 a. m. Microsismo instrumental de N. W. Duración 30 s., un choque.

Dia 21 A h. 3 m 47 á. m . Otro microsismo susultorio, todavia menos fuerte. Dirección de N. W. Duración apenas 30 s . En ambos microsismos se notan rapidísimas oscilaciones de amplitud de $0,5 \mathrm{~mm}$.

El temblor de Rusia de Enero 22 no se registró.

FEBRERO

Dia 10 A h. $4 \mathrm{~m} .58 \mathrm{~s} .30 \mathrm{p} . \mathrm{m}$. Temblor lejano á ondas largas, fase principal 40 s . por rápidas é irregulares oscilaciones; siguen 6 ondas largas en 1 m . de ampli-
tud de 12 mm . que disminuyendo desaparecen después de 11 m . Su procedencia era de S. w.

Dia 11 A h. 8. m. 15 . Microsismo local instrumental. Durante el $1 .{ }^{\circ}$ minuto se notan muy pequeñas amplitudes de 1 mm .; en el $2 .{ }^{\circ}$ minuto aumentan á $1,5 \mathrm{~mm}$. siendo irregulares siguen después pequeñas oscilaciones durante 2 minutos.

Dia 13 A h. 3 m .15 s .30 . Temblor susultorio instrumental. Duración 1 min .30 s . Procedencia de N. w.

MARZO

Dia í4 A h. 1. m. 19 p. m. Dirección de w. á E. Duración 1 m .30 s . Fué sentido por algunas personas.

Dia 15 Temblor. (Faltan más datos).
Parece que estos dos temblores son relacionados con los temblores que han sido registrados según «Los Andes» Marzo 14, uno en Fermo en las primeras horas de la mañana por dos breves sacudimientos, el otro (violento) registrado en Florencia por la tarde, distancia 5000 kiló metros.

Dia 18 A h. 11 m. 57 p. m, Dirección de w. á E. Duración 2 minutos. Ondulaciones muy irregulares, principiando y concluyendo muy suavemente; amplitud máxima 3 mm . Parece que es el mismo temblor que fué registrado como un violento temblor en Honolulu (Hawai) Marzo 18, según informa «Los Andes».

ABRIL
Día 3 A h. 11 m .18 a. m. Tres O. L. amplitud máxima on N. S. 5 mm w. E. $6,5 \mathrm{~mm}$.

Dia 4 A h. $2 \mathrm{~m} .50 \mathrm{p} . \mathrm{m}$. Temblor lejano. Procedencia de N. W. Fase preliminar 40 s. Amplitud máxima w. E. 4 mm . N. S. 6. 5 mm . Duración de la oscilación 10 minutos.

Dia 5 A h. 2 m. 49. Ondas largas con periodicidad durante 20 minutos. Amplitud máxima w. E. $=0,5 \mathrm{~mm}$. $\mathrm{N} . \mathrm{S} .=0,8 \mathrm{~mm}$.

Dia 6 A h. 3 m. 29 p. m. Temblor lejano registrado de N. w. Fase preliminar 1 m .20 s . Siguen ondas largas de carácter irregular (doblación). Amplitud máxima w. E. $3,6 \mathrm{~mm}$. N. S. 3 mm . Duración do la ondulación 8 minutos.

Dia 9 A h. 2 m. 44 p. m. Duración 54 minutos. Ondas largas. Procedencia do N. E. Amplitud máxima 1 mm

Dia 10. Á h. 2 m .6 s. 10 p.m. Temblor susultorio de N. w. con rápidas oscilaciones. Fase preliminar de 40 s .

Dia 13 A h. 5 m. 54 s. 30 a. m. Macrosismo susultorio de rapidisimas oscilaciones. Dirección de N. E. Amplitud máxima w. E. $=1,8 \mathrm{~mm}$. N. S. $0,9 \mathrm{~mm}$.

MAYO

Dia 1 A h. 1 m .46 á. m. Temblor á ondas largas. Fase preliminar 1 m .28 s . Amplitud máxima w. E. $=15$ mm . N. S. $=19,5 \mathrm{~mm}$. Distancia del epicentro 650 km . Dirección de N. w. Duración hasta 2 h 5 m . a. m.

Dia 5 A h. $12 \mathrm{~m} .43 \mathrm{p} . \mathrm{m}$. Temblor registrado á ondas largas: igualmente la fase preliminar de 1 m .10 s . Amplitud máxima w. $\mathrm{E}=7,5 \mathrm{~mm}$. N . S . $28,5 \mathrm{~mm}$. Dirección de S. W

Dia 8 A h. $2 \mathrm{~m} .41 \mathrm{p} . \mathrm{m}$. Temblor registrado á ondas largas que duran hasta las 3 p . m. principia con muy pequeña amplitud de $0,5 \mathrm{~mm}$. Amplitud máxima N . S. $=4 \mathrm{~mm} . \mathrm{w} . \mathrm{E} .=5 \mathrm{~mm}$. Dirección de N. E.

Dia 22 A h $3 \mathrm{~m} 23 \mathrm{a} . \mathrm{m}$. Temblor susultorio de oscilaciones rapidisimas. Faja w. E. nota como primer movimiento de la aguja un considerable desvío de la misma al w. (1, 2 mm .

JUNIO

Dia 3 A h. 2 m .36 s .40 a. m. Por ambos aparatos registrado un desvío lateral viniendo el origen de N. w. N. Semi amplitud máxima de N. S. $=9 \mathrm{~mm}$. w. E. $=1$ mm ., sin fase preliminar.

Dia 3 A h. $2 \mathrm{~m} .50 \mathrm{~s} .15 \mathrm{a} . \mathrm{m}$. se repite el mismo fenómeno pero la semi amplitud N. S. es solamente - 1 $\mathrm{mm} . \mathrm{w} . \mathrm{E} .=1 / 2 \mathrm{~mm}$.

Dia 4 A h. $9 \mathrm{~m} .12 \mathrm{~s} .20 \mathrm{a} . \mathrm{m}$. Desvio lateral de las agujasorigen de N. w., semi amplitud N. S. $=2$ mm., w. E. $0,5 \mathrm{~mm}$.

Dia 4 A h. 9 m. 23, s. 40 a. m. lo mismo. N. $\mathrm{S} .=1$ mm ., w. E. $=0,25 \mathrm{~mm}$.

Durante el resto del dia ondas largas.
Dia 9 A h. $5 \mathrm{~m} .58 \mathrm{~s} .25 \mathrm{p} . \mathrm{m}$. han sido registradas 3 ondas largas. Duración 30 s. Amplitud w. E. $=3,5$ mm . N. S. $=1 \mathrm{~mm}$., repitiéndose después de 40 s . con media amplitud. El origen de N. w.

Dia 12 A h $10 \mathrm{~m} .50 \mathrm{p} . \mathrm{m}$. Temblor lejano de N. w. Distancia 4000 km . más ó menos. Amplitud w. E. $=35$

AGOSTO

mm. N. S. $=1,5 \mathrm{~mm}$. Duración hasta las 11 h. 40 m. p. m.

Día 14 Deh. 4 m .44 a. m. hasta h. $5 \mathrm{~m} .6 \mathrm{a} . \mathrm{m}$ ondas laroas.

Dia 16 A h. $1 \mathrm{~m} .55 \mathrm{~s} .40 \mathrm{p} . \mathrm{m}$. Temblor local. Dirección de S. w. Amplitud w. E. $=2 \mathrm{~mm}$. N. S. $=1.5$ mm . Fase preliminar 25 s . Distancia 208 km . registrado por irregulares oscilaciones. Coincide un súbito aumento de la presión atmosférica: 8 a. m. 692, 6; 2 p. m. 698; 8 p. m. 700,6 ; subiendo la curva rápidamente á la hora del temblor.

Dia 18 A h. 3 m .28 p. m. Microsismo Jocal de carácter susultorio. Origen de w. N. w. Fué sentido por muchas personas. Amplitud máxima w. E. $=7 \mathrm{~mm}$. N. S. 4 mm . Fase preliminar 4 mm . Distancia 150 km .

Dia 26 A h. 1 m. 52 a. m. Temblor lejano. Dirección de N. w. Amplitud máxima N. S. $=75 \mathrm{~mm}$. w. E. $=11 \mathrm{~mm}$. Fase prelíminar 11 mm . Distancia 320 km . (?). La ondulación sigue, en periodicidad, hasta las 4 a. m. más ó menos.

Dia 27 A h. $5 \mathrm{~m} .25 \mathrm{p} . \mathrm{m}$. Temblor susultorio de w. S. w. Amplitud máxima w. E. $=0,5 \mathrm{~mm} . \mathrm{N} . \mathrm{S} .=0,3$ mm . en oscilaciones rapidísimas.

JULIO

Dia 10 (Hora no indicada). Temblor local susultorio de regular intensidad. Fué sentido por muchas personas. Procede de N. w.

Dia 18 A h. $7 \mathrm{~m} .17 \mathrm{p} . \mathrm{m}$. Temblor lejano á ondas largas. Fase preliminar 35 s . No es muy clara. Distancia del epicentro 300 km . Procede de N. w. Amplitud máxima 7 mm .

Dia 22 A h $10 \mathrm{~m} .56 \mathrm{a} . \mathrm{m}$. Temblor susultorio de w Duración de las oscilaciones rapidisimas 30 s. Amplitud máxima w. $\mathrm{E} .=1 \mathrm{~mm}$. N. S. $=0,8 \mathrm{~mm}$

Dia 27 A h. $8 \mathrm{~m} .7 \mathrm{p} . \mathrm{m}$. Temblor local susultorio de N. W. por rapídísimas y muy irregulares oscilaciones, durante 1 m .30 s . de amplitud de 1 mm . que se pierden en pequeñas ondas largas.

Dia 28 A h. $1 \mathrm{~m} .32 \mathrm{a} . \mathrm{m}$. Temblor lejano á ondas largas. La fase preliminar 4 m . no es clara. Distancia 1800 km . más ó menos. Amplitud w. E. $=33 \mathrm{~mm}$. N. $\mathrm{S} .=40 \mathrm{~mm}$. La ondulación dura con periodicidad hasta las 2 h. 45 m. a. m. El temblor procede de N. w. w.

Dia 1 A h. 10 m .35 a. m. Temblor local susultorio por rápidas oscilaciones procediendo del N. w. Amplitud máxima w. E. $=1 \mathrm{~mm} . \mathrm{N} . \mathrm{S} .=1 \mathrm{~mm}$. Duración 30 s . Fué sentido por muchas personas.

Dia 6 A h. $6 \mathrm{~m}, 7 \mathrm{p} . \mathrm{m}$. Temblor lejano de gran intensidad (del Perú). Procede de N. w. N. Amplitud máxima w. $\mathrm{E} .=120 \mathrm{~mm} . \mathrm{N} . \mathrm{S}=130 \mathrm{~mm}$. Fase preliminar $5 \mathrm{mi}-$ nutos. Distancia 2200. Duraciód La aguja del aparato N. S. salió afuera de su límite.

Dia 15 A h. 6 m .13 á. m. Temblor lejano a ondas largas Parece un posttemblor del Perú. Prócede de N. w. N. Amplitud máxima w. E. $=1,2 \mathrm{~mm}$. N. S. $=1,3 \mathrm{~mm}$. Fase preliminar no claaa. Duración 1 hora.
so preliminar no clata. 8 á. m. Temblor local por muy
Dia 15 A h. 1 m . tud máxima w. $\mathrm{E} .=0,5 \mathrm{~mm}$. N. $\mathrm{S}=0,3 \mathrm{~mm}$. Duración 5 s . Pareco ser la consecuencia del calor del dia anterior.

Dia 16 Ondas largas se repiten con más grande amplitud ($1,5 \mathrm{~mm}$.) en N. S. que w. E. Proceden de N. w. N. Probablemente son repercusiones de los posttemblores peruanos. Estos fenómenos se repiten hasta el fin del Agosto siendo especialmente el dia 26 fuertes ondas largas.

Además se nota una sensibilidad susultoria por muy pequeñas oscilaciones rapidísimas on la faja w. E. Se repite hasta el fin de Agosto este fenómeno. Igualmente la presión atmosférica ha sido muy alta.

SETIEMBRE

Dia 2 A h. 9 m. 16 p. m. Temblor local susultorio de regular intensidad ($2 .{ }^{\circ}$ grado). Procede de w. S. w. Amplitud máxima w. $\mathrm{E} .=0,6 \mathrm{~mm}$. N. $\mathrm{S} .=0,5 \mathrm{~mm}$. Fase preliminar 12 seg. Distancia 130 km Duración 40 seg . Epicentro Rivadavia donde se lo sintió fuertemente, más que en Mendoza.

Dia 10 A h. $3 \mathrm{~m} .2 \mathrm{a} . \mathrm{m}$. Ondas largas en periodos. Proceden de N. w. Amplitud máxima w. E. $=1 \mathrm{~mm}$. N. $\mathrm{S} .=1,5 \mathrm{~mm}$. Duración hasta h. $3 \mathrm{~m} .27 \mathrm{a} . \mathrm{m}$. Se muestran como repercusiones de un temblor muy lejano.

Dia 12 A h $3 \mathrm{~m} .12 \mathrm{a} . \mathrm{m}$. Temblor local susultorio, sentido por pocas personas. Procede del N. w. Amplitud máxima w, $\mathrm{E}=0,4 \mathrm{~mm}$. N. $\mathrm{S} .=0$, 6. Distancia 100 km . Duración 15 seg.

La componente w, E. ha influido muy débilmente. Probablemente, el temblor es una consecuencia del calor y de la fusión del dia 10

Dia 15 A h. 11. m. 46 a m. Temblor local susultorio instrumental. Procede del w. Amplitud máxima w. $\mathrm{E} .=0,4 \mathrm{~mm}, \mathrm{~N} . \mathrm{S} .=0,6 \mathrm{~mm}$. Duración 16 seg . Principiando con la indicada amplitud máxima que es unilateral siguen rapidísimas oscilaciones de muy pequeña amplitud ($0,2 \mathrm{~mm}$.).

Dia 16 Desde la hora 11 a. m. Ondas largas durante toda la tarde. Amplitud máxima w. $\mathrm{E} .=0,8 \mathrm{~mm} . \mathrm{N}$. $\mathrm{S} .=0,9 \mathrm{~mm}$.

Dia 17 A h. 8 m .12 s .40 . Temblor local susultorio sentido por pocas personas. Procede de N. W. Amplitud máxima w. $\mathrm{E} .=\mathrm{u}, \check{\mathrm{y}} \mathrm{N} . \mathrm{S} .=0,5$. Fase preliminar 4 seg. Distancia del epicentro 125 km . Duración con fase preliminar 30 seg . Se lo sintió solamente ell el lado N . de esta ciudad (zona sísmica).

Dia 24 A h. $4 \mathrm{~m} .50 \mathrm{p} . \mathrm{m}$. Temblor de tipo ondas largas. Fase preliminar muy clara. Procede de N. w. Amplitud máxima w. E. $=1 \mathrm{~mm}$. N. S. $=1 \mathrm{~mm}$. Fase preliminar 28 seg. Distancia del epicentro 204 km . Duración 1 min .20 seg . Probablemente consecuencia del deshielo (term, 26°).

Dia 25 A h. 2 m. 54 a. m. Macrosismo local susultorio con ruidos subterráneos, oscilaciones rapidisimas en todo el sismograma. Procede de N. W. (?). Amplitud máxima w. E. $=7 \mathrm{~mm}$. N. S. $=6 \mathrm{~mm}$. Fase preliminar 14 seg. Distancia del epicentro 103 km . Duración 2 min.

Parece consecuencia del calor y deshielo del dia anterior. Fué sentido en toda la ciudad habiendo despertado la población. Algunas personas me informan que los rui. dos subterráneos se han oido con anticipación de unos 20 min. y que los tres choques que vinieron 2 h .54 min . hacian estremecer (vibrar) las ventanas y en algunos casos las puertas. El señor Reed observó que la lámpara eléctrica quedo oscilando con amplitud de $1 / 2$ metro Dijo que en muchas casas salieron á la calle, pero él con su familia se quedó como buen chileno. Creo que este temblor no corresponde al último temblor chileno del mismo día.

Dia 29 A h. $11 \mathrm{~m} .51 \mathrm{p} . \mathrm{m}$. Temblor lejano á ondas largas, periodos muy claros, viene de N. w. Amplitud máxima W. E. $=3,5 \mathrm{~mm}$. N. S. $2,5 \mathrm{~mm}$. Fase preliminar no es clara, parece ser $4,5 \mathrm{~m}$. Distancia 1300 km , (?). Duración 30 minutos. De Santiago de Chile se avisa este dia un alarmante temblor, sin indicar la hora.

Dia 30 Todo el dia pulsaciones (ondas largas. Presión atmosférica alta (701,3), pero constante. El temblor de Iquique (Chile) del mismo dia no se registró.

OCTUBRE

Dia 2 A h. 12 m .20 a. m. Temblor lejano á ondas largas, en periodos bien claros de w. N. Amplitud máxima W. E. $=5 \mathrm{~mm} . \mathrm{N} . \mathrm{S} .=1,4 \mathrm{~mm}$. Fase preliminar poco clara 6 minutos. Distancia del epicentro 2500 km .(?). Duración 1 hora 20 minutos. Toda la tarde pulsacimes (ondas largas)

Dia 3 A h. $6 \mathrm{~m} .39 \mathrm{s}. \mathrm{40}$. de N. W. Aniplitud máxima W. E. $=5,5 \mathrm{~mm}$. N,,$~=$ 2, 7 mm . Fase preliminar 18 seg . Distancia del epicentrp 131 km .

Dia 4 A h. $3 \mathrm{~m} .24 \mathrm{a} . \mathrm{m}$. Temblor susultorio con epicentro en San Rafael. Procede de S. W. Amplitud máxima $w . \mathrm{E}=0,2 \mathrm{~mm}$. N. S. $0,3 \mathrm{~mm}$. Sin fase preliminar. Las pequeñas pero rapidisimas oscilaciones dura ron 1 min . Informan de San Rafael que no recuerdan un temblor tan fuerte como este. En Mendoza so sintió por muy pocas personas.

NOVIEMBRE

Dia 4 Ah. 5 m .52 á. m. Temblor lejano á ondas largas en periodos bien claros. Procede de N. w. Amplitud máxima de las ondas w. E. $=18,5 \mathrm{~mm}$. N. S. $=4$, 5 mm . Fase preliminar poco clara 4 min .30 seg . Distancia del epicentro 2000 km . Duración 1 h .15 m . Se trata probablemente de una registración de un temblor peruano.

Dia 6 A h. $1 \mathrm{~m} .48 \mathrm{a} . \mathrm{m}$. Ondas largas durante 8 minutos. Amplitud maxima w. $\mathrm{E}=0,5 \mathrm{~mm} . \mathrm{N} . \mathrm{S} .=0$, $\overline{\mathrm{mm}}$. Duración 32 seg . Además se muestran durante toda la mañana pulsaciones de más pequeñas dimensiones especialmente en la componente N. S. Parecen relacionadas con el cambio de la presión atmosférica.

Dia 9 A h. $9 \mathrm{~m} .10 \mathrm{a} . \mathrm{m}$. Temblor lejano á ondas largas. Los periodos son poco claros. Procede de N. w. Amplıtud máxima w. $\mathrm{E}=80 \mathrm{~mm}$. N. s. $=40 \mathrm{~mm}$. Fase preliminar 1 min. 40 seg Distancia del epicentro 770 km . Duración 56 minutos. Registración de un temblor peruano.

Dia 16 A h. $9 \mathrm{~m} 11 \mathrm{p} . \mathrm{m}$. Ondas largas. Amplitud máxima W. $\mathrm{E} .=0$, $\mathbf{~} \mathrm{mm} . \mathrm{N} . \mathrm{S} .=0$, $\quad \mathrm{mm}$. Duración 40 segundos.

Es dififil de explicar la causa de estas pulsaciones tan frecuentes en este mes que ha sido caracteristica por una absoluta atonia local. Estos dos hechos coinciden in-
teresantemente en este mes: la atonía local y las pulsaciones.

Dia 17 A h. 9 m .13 a. m. Pulsaciones (ondas largas) Amplitud máxima w. $\mathrm{E} .=0,4 \mathrm{~mm}$. N. $\mathrm{S} .=0,3$ mm. Duración 2 min. 30 seg .

Dia 17 A h. 2 m. 36 p. m. Pulsaciones (ondas largas) Amplitud W.E. $=0,8 \mathrm{~N} . \mathrm{S} .=0,6$. Duración 9 min

Dia 18 Todo el dia fuertes pulsaciones (ondas largas) en ambas fajas. Amplitud máxima W. E. $=0$, $6, \mathrm{~N} . \mathrm{S} .=0,7$

Dia 21 Toda la tarde ondas largas por la componente N.S. Amplitud máxima N. S. $\Longleftarrow 0,4 \mathrm{~mm}$.

Dia 23 Desde las 4 a. m. fuertes pulsaciones (ondas argas) en N. S. Amplitud máxima $=0,4 \mathrm{~mm}$.

Dia 25 A h. 3 m .26 p. m. Empiezan suavemente ondas laroas. Proceden de N. w. (?) Amplitud máxiına w. $\mathrm{E} .=0,2 \mathrm{~mm} . \mathrm{N} . \mathrm{S} .=1 \mathrm{~mm}$. Duración 2 horas.

Dia $26 \mathrm{Am} .12 \mathrm{~m} .11 \mathrm{~s} .40 \mathrm{p} . \mathrm{m}$. Temblor susultorio instrumental de rapidísimas oscilaciones. Procede del S. w. Amplitud máxima W. E. $=0,5 \mathrm{~mm} . \mathrm{N} . \mathrm{S} .=0,5 \mathrm{~mm}$. Duración 50 seg . En la faja w. E. se nota que las oscilaciones empiezan con un fuerte desvio lateral de la aguja hácia el este

Dia 26 A h. 8 m. 48. En la componente N. S. un choque susultorio instrumental de muy pequeñas rápidas oscilaciones. Amplitud máxima N. S. $=0,1 \mathrm{~mm}$. Duración 10 segundos.

Dia 28 A h. 2 a. m. Pulsaciones solamente en la fia1a N. S. Amplitud máxima N. S. $=0,1 \mathrm{~mm}$. Duración 11 horas.

Dia 30 A h. 9 a. m. Ondas largas solamente en la faja N. S. Amplitud máxima N. S. $=0,1 \mathrm{~mm}$. Duración 2 horas 30 minutos.

DICIEMBRE

Dia 2 Toda la tarde. Ondas largas. Amplitud máxi$\mathrm{ma} \mathrm{w} . \mathrm{E} .=0,2 \mathrm{~mm}$. N. $\mathrm{S}=0,4 \mathrm{~mm}$.

Dia 4 A h. $11 \mathrm{~m} .6 \mathrm{p} . \mathrm{m}$. Temblor local susultorio instrumental de pequeñas pero rápidas oscilaciones. Procede del S. w. Amplitud w. $\mathrm{E}=0,2 \mathrm{~mm} . \mathrm{N} . \mathrm{S} .=0,3$ mm . Duración 1 min .20 seg .

Dia $7 \mathrm{~A} \mathrm{~h} .8 \mathrm{~m} .52 \mathrm{a} . \mathrm{m}$. Temblor local susultorio instrumental de rapidisimas oscilaciones. Procede de N . W. Amplitud máxima W. E. $=0,1 \mathrm{~mm} . \mathrm{N} . \mathrm{s} .=0,2$ mm . Fase preliminar 14 seg . Distancia del epicentrs 139 km . Duración 30 seg

Dia 7 A h. $5 \mathrm{~m} .9 \mathrm{p} . \mathrm{m}$. Pulsaciones por rapidísimas oscilaciones on la faja N. S. Amplitud máxima N. S. $=$ $0,1 \mathrm{~mm}$. Duración 15 seg.

Dia 9 A h. $6 \mathrm{~m} .30 \mathrm{a} . \mathrm{m}$. Ondas largas por la componente N. S. Aimplitud máxima N. S. $=0,3 \mathrm{~mm}$. Duración 10 horas.

Dis $10 \mathrm{~A} \mathrm{~h} .2 \mathrm{~m} .31 \mathrm{p} . \mathrm{m}$ Temblor locial susultorio instrumental de pequeñas pero muy rápidas oscilaciones. Procede de S. w. Amplitud máxima w. E. $=0,2 \mathrm{~mm}$. N. S. $=0,2 \mathrm{~mm}$. Fase preliminar no es clara. Distancia del epicentro 100 km . más ó menos. Duración 5 seg.

Dia 12 A h. 6 m .30 p. m. Fuertes pulsaciones á oudas largas en la faja N. S. Amplitud maxima N. S. $=$ $0,3 \mathrm{~mm}$. Duración 5 horas.

Dia 13 A h. Pulsaciones á ondas largas en la faja N. S. Amplitud máxima N. S. $-0,3$ mim. Duración 24 horas

Dia 15 Todo el dia. Fuertes pulsaciones a ondas laroas en la faja N. S. Amplitud máxima N. S. $=0,4 \mathrm{~mm}$. Duración 24 horas.

Dia 17 Todo el dia. Fuertes pulsaciones á ondas largas en la faja N. S. Amplitud máxima N. S. $=0,4 \mathrm{~m}$. m. Duración 24 horas.

Dia $19 \mathrm{~A} \mathrm{~h} .5 \mathrm{~m} .48 \mathrm{p} . \mathrm{m}$. Irregulares ondas largas en ambas fajas. Amplitud máxima w. E. $=1,1 \mathrm{~mm}$. N . $S^{-}=\mathrm{c}, 9 \mathrm{~mm}$. Duración 3 minutos. Este fenómeno representa un desvio de las agujas hácia el lado del péndulo de contrapeso.

Dia 20 Todo el dia. Pulsaciones á ondas largas por la componente N. S. Amplitud máxima N. S. $=1 \mathrm{~mm}$. Duración 24 horas.

Dia 21 A h. $10 \mathrm{~m} .51 \mathrm{a} . \mathrm{m}$ Temblor local susultorio de rapidísimas oscilaciones y de regular intensidad. Procede de S. W. Amplitud máxima W. E. 1 mm . N. S. 1 mm . Fase preliminar 10 seg. Distancia del epicentro 100 km . Duración 40 seg. Fué sentido por numerosas personas. Se han podido distinguir claramente 2 choques de S. W.

Dia 27 A h. 6 a. m. Pulsaciones á ondas largas en la faja N. S Amplitud máxima N. S. 0, 2 mm . Duración 6 horas.

Dia 28 A h. $9 \mathrm{~m} .14 \mathrm{a} . \mathrm{m}$. Temblor local, registrado por irregulares, rápidas oscilaciones. Procede de N. w. Amplitud máxima W. E. $=0,8 \mathrm{~mm}$. N. S. $=0,8 \mathrm{~mm}$. Fase preliminar 30 seg. Distancia del epicentro 360 Km Duración 5 minutos.

Dia 31 A h. $5 \mathrm{~m} .27 \mathrm{p} . \mathrm{m}$. Irregulares ondas largas
en ambas fajas. Amplítud máxima w. E. 1 mm . N. S. 1 , 5 mm . Duración 3 minutos.

Una memorable granizada en Montevideo

(SEPTIEMBRE 6 DE 1909)

Por Gerónimo Zolesi, Secretario del Observatorio Fí-sico-Climatológico Nacional de Montevideo.

Una manga de granizo memorable por e? inusitado tamaño de las piedras, por su duración y por los destrozos ocasionados, sorprendió a la población de Montevideo, á la una y cinco minutos á. m. del 6 de Septiembre de 1909.

A esa hora sobrevino como viento de reacción de un sistema ciclónico que evolucionabar activamente desde el día anterior, segun lo demuestra el diagrama barométrico reproducido aquí, una violenta turbonada del S . al W. cuya velocidad se aproximó á 100 kms . horarios. Simultáneamente, empezó á resonar ell azoteas y clara. boyas, el choque seco característico del granizo, que se precipitaba en piedras de tamaño hasta ahora no observado en Muntevideo, por el que escribe estas lineas, timaño extraordiario ell este hidro-meteoro, no tan solo para el clima del Uriguay, sinó en absoluto, como quiera que la Metoorología al establecer escala para el estudio de la altura y velocidad de formación del mismo, señala 40 mm . coms, uno de los diámetros máximos.

Agitac ones be rométricas. Las flechas señalan la caida de la manga de granizo casi simultánea á la enirr da del Pampero. Inscriptas por el Barómetro de Nercu:io del Observa

La anormalidad del choque, no pudo no alarmarnos. Debimos comprobar que sobrada causa teníamos para ello, al ver cruzar por el aire en fuitivas líneas blancas, el granizo que se fragmentaba estrellándose contra el pavimiento, mientras más ó menos próximo, llegaba á nuestros oídos, el agudo crujir de chapas de vidrio que se astillaban o eran perforadas como por proyectiles de armas de fuego según puede verse en el grabado respectivo.

or araizo, en planchas de vidrio de medio Rentimetro de sección

Los ejemplares recojidos por nosotros, de contornos ovoidales algunos, esferoidales irregulares los más, median de cuatro á seis centímetros en su eje mayor. Personas dagnificadas por la granizada, nos suministraron sobre el tamaño de las piedras, datos que elevan aún mas a lonoitud de los diámetros observados por nosotros. I forzoso nos fué acreditar la. rigurosa exactitud de las re ferencias, midiendo las perforaciones de los vidrios de las claraboyas acribilladas por la piedra. No eran, en efecto raras las perforaciones de 6 á 8 centimetros de dámetro ligeramente esferoidales.

Tamaño de piedras de granizo, re ejidas por ei señor Zolesi. famaño Natural)

$-190-$

Seccionados los ejomplares de granizo, que recojimos, presentaban un núcleo opaco lechoso ubicado hácia el centro, en muy pocos hácia la periferia, hecho que parecería probar la ausencia en fusiones parciales, una vez producida la congelación debida, dada la concomitancia del fenómeno, á la súbita introducción de corrientes frías del Sur en las masas de aire sobresaturadas de vapor de agua. La reacción térmica violenta, produjo la congelación, y al moderarse luego, la precipitación del aguacero, violento á su vez, pues ha da do la excepcionrl cantidad de unos 12 litros en un minuto y de 22 litros en un cuarto de hora.

Partiendo el núcleo, la sobreposición de capas notábase apenas en contornos sucesivos, que interrumpian lia transparencia casi cristalina de las piedras.

Granizos seccionades. (Tnmaño naiural). Núcleo central y la sobreposición de capas cristalinas. (Observaaciones del señor Zoles').

Fenóneno notable, relacionado con los càmbios de temperatura y consiguientemente también de estado hidrométrico de las masas atmosféricas superiores, fué que parada la primera racha sobrevino una segunda granizada, que si bien no ofreció solución de continuidad, con la primera, de ésta diferia por la cantidad de piedras y por el volúmen de las mismas, (véase el grabado que les corresponde).

Duró esta segunda manga cuatro minutos y sus piedras medían de 1 á 2 centímetros de diámetro, es decir, el triple ell término medio, de los ejemplares comunes de cuatro ó cinco granizadas que suelen observarse de año en año.

El periodo de la segunda manga, fué superior al de la anterior en unos dos minutos, hecho digno de atención también éste, porque las observaciones generales
atribuyen á las granizadas una duracion raramente superior á tres minutos. El suelo no tardó en blanquear con la capa de granizo. No podemos dejar de observar aquí que la forma de los granos de la segunda, era sensiblemente esferoidal, su composición de un blanco nieve y el núcleo central.

Ni en estos ni en los anteriores, notamos núcleos dobles.

Una sola granizada de proposiciones mayores que esta, conocemos hosotros. Es la que se desplomó sobre la Asunción del Paraguay en Mayo 21 (?) de 1907. Las piedras en cantidad formidable median de 5 á 8 centímetros de diámetro. Ni una «teja francesa», quedó intacta. Los edificios y establecimientos públicos techados con este artículo, quedaron á cielo descubierto.
En la zona Norte de Montevideo, no quedó intacta araboya alguna expuesta libremente y sin defensas metálicas.

Para hallar rememoración de una granizada análoga á la del 6 de Septiembre de 1909, debemos remontarnos al 26 de Junio de 1877.
«En esta fecha, dice el cronista Rivas (1) cae en Montevideo una extraordinaria manga de piedra que llena de terror á los habitantes, tanto por el tamaño, alcanzando algunas al de una manzana, como por la abundancia y fuerza con que caían. Los destrozos ocasionados por la piedra, inmensos. Las sementeras, en el radio que abarcó el azote, perdiéronse totalmente. Destroza los árboles, hiere y mata animales; no deja en la ciudad un vidrio entero de los faroles del alumbrado y de los techos de cristal, rompiéndolos tambien en todas las ventanas donde chocaron las piedras. Se ha asegurado que los más ancianos no recordaban un hecho igual".

Aunque no aceptamos sin reserva algunas de estas afirmaciones, creemos en la última por el testimonio del respetable é ilustrado octogenario doctor Fénix, de « $E l$ Siglo».

Deseando conocer la extensión y trayectoria de la manea, solicitamos informes de los observadores del ser vicio Pluviométrico, anexo al Instituto de Física.

De la revisación de los datos, se desprende que:
$1 .{ }^{\circ}$ La turbonada, cuyo contacto anotamos en Montevideo á la 1 y 5 a. m ., avanzó hácia el Norte con una ve-

[^0]locidad media de 94 kilómetros por hora, sin haber perdido mucho de su fuerza al cruzar el río Negro.
2. ${ }^{\circ}$ La granizada fué casi general, entre los meridianos $55 .^{\circ}$ y 570°, y hasta el paralelo $33 .^{\circ}$ es decir, en una zona comprendida en el territorio uruguayo entre Manzovillagra y Drable, Montevideo y Molles.
3. ${ }^{\circ}$ La primera manga asoladora, no traspuso los límites del Departamento de Montevideo, pues no se acusaron daños considerables más allá de 15 kilómetros de la costa, con dirección al Norte.
$4 .^{\circ}$ La misma se redujo lo que es general en este hidro-meteoro á una zona muy estrecha que fué reduciéndose rápidamente.

Las piedras, en efecto, eran todavía de tamaño de un huevo de gallina en Colón (2 kilómetros), donde rompieron tejados, medían apenas 5 mm . en las Piedraso(20 kilómetros) y eran como granos de garbanzos en Canelones (42 kilómetros, en cuyos alrededores ocasionaron algunos perjuicios á la vugetación de las chacras.
$5 .{ }^{\prime \prime}$ Como el 75% de las granizadas de Montevideo, se produjo esta por efecto de un brusco descenso térmico debido á vientos del tercer cuadrante.

Risultati razionali ottenuti da uno studio di investigazione Sismica: PER
 GAMIDINONEGHEI

Cul titolo di: «Relazioni Razionali pel calcolo della distanza epicentrale», pubblicai negli «Anales de La Sociodad Cientifica Argentina", (tomo LXXV-1913-Buenos Aires) i primi risultati che ottenni razionalmente rispetto alle relazioni che legano: $\mathrm{Y}_{1}, \mathrm{t}_{1}, \mathrm{~V}_{1}, \mathrm{~W}_{1}$, con S . (essendo $\mathrm{Y}_{1}, \mathrm{t}_{1}, \mathrm{~V}_{1}, \mathrm{~W}_{1}$, ed S , rispettivamente: la durata dei primi tremiti preliminari, il tempo impiegato da essi a percorrere la distanza epicentrale, la velocitá media apparente, ed assoluta apparente degli stessi primi tremiti preliminari, e la distanza epicentrale).

Aggiungevo in detta nota, che i risultati ottenuti colle relazioni che determinai, vennero confrontati con quelli ottenuti direttamente rispetto a molti casi, tolti da bollettini Italiani, Tedeschi, Russi, Spagnuoli, Greci, Giapponesi, Cauadesi; riuscendo il confronto molto soddisficente, dalle distanzo epicentrali minime, alle antípode.

Promettero infine che nel 1913 se ne sarebbe fatta la pubblicazione in «extensos

Per cause impreviste tutto il lavoro in «extenso» verrà ritardato alquanto; approffittai perció di questo frattempo, per calcolare di nuovo alcune costanti (tenendo in conto alcuni elementi che prima aveva trascurato per semplicitá) apportando cosi leggére modificazioni alle formole gía esposte; e determinando poi le relazioni che legano: $Y_{2}, Y_{3}, Y_{4}, Y_{5}$ con S; essendo $Y_{2}, Y_{3}, Y_{4}, Y_{5}$, rispettivamente la durata: dei secondi tremiti preliminari; delle onde della prima sottofase principale ($3 .^{a}$ sezione); di quelle della seconda sottofase principale (4. ${ }^{\text {a }}$ sezione); e di quelle della terza sottofase principale ($5 .^{a}$ sezione); ottenendo in conseguenza, le relazioni che legano le t colle S , per tutte le specie di onde nominate.

Anche per questi nuovi elementi i confronti furono molto soddisfacenti.

Attendendo che esca la pubblicazione in «extenso» espongo qui alcuni dei risultati ottenuti.
«Relazioni giá esposte.--»negli: «Anales» Sociedad Cientifica Argentina»-tomo LXXV. Buenos Aires. 1913.

Per: $\mathrm{S}=9$,

$$
Y_{1}=\frac{S-5,93}{1.46}
$$

ed in conseguenza:

$$
\begin{aligned}
& \text { Per } \mathrm{Y}_{1} \leftrightharpoons 2,05, \quad \mathrm{~S}=\frac{\mathrm{Y}_{1}}{2,05} ; \\
& \text { Per: } 2,05 \unlhd \mathrm{Y}_{1} \quad 10,1, \quad \mathrm{~S}=\frac{\left(\mathrm{Y}_{1}-1-2,32\right)^{2}}{16,83}, \\
& \text { Per: } \mathrm{Y}_{1} _10,1, \quad \mathrm{~S}=1,46 \mathrm{Y}_{1}-5,93
\end{aligned}
$$

nelle qualí rispettivamente S é espresso in migliaia di K. m., ed Y_{1} rimane espresso in minuti primi e frazione decimale di minuto primo; Y_{1} é espresso in minuti primi e frazione decimale di minuto prims, ed S rimane espress 2 in migliaia di chilometri.

Per: $\mathrm{S} \rightrightarrows 1_{1} \mathrm{~V}_{1}=\mathrm{W}_{\mathrm{A}}=\mathrm{u}=0,378$;
Per: $1 \npreceq \mathrm{~S} \leftrightarrows 9, \quad \mathrm{~V}_{1}=\frac{\mathrm{S}}{5,13 \mathrm{~V}-2,9}, \quad \mathrm{~W}_{1}=0,389 \mathrm{~V}-$ $A=0,076$.
Per: S \& $9, \mathrm{~V}_{1}=\frac{1,17 \mathrm{~S}}{\mathrm{~S}-5,93}, \mathrm{~W}_{1}=1,17$;
in cui, u, V_{1}, W_{1}, A, che rapresentano rispettivamente la velocitá iniziale all' epicentro, la velocitá media apparente lungo l' arco S, la velocitá assoluta apparente in un punto qualsiasi di detto arco, e l' ascelerazione media di propagazione dei primi tremiti preliminari) rimangono espressi in migliaia di chilometri al minuto primo, quando S venga espresso in migliaia di K. m.

Queste sono le relazioni che esposi nella citata nota, le quali, giá dissi, permettonó di ottencre risultati veramente soddisfacenti.

Volendo ottenere risultati ancor piú approssimati, si dovranno usare le seguenti relazioni, che ottenni, calcolando di nuovo le costanti:

Per. $\mathrm{S} \leftrightarrows 1, \mathrm{Y}_{1}=1,8 \mathrm{~S}$;
Per: $1 孔 \mathrm{~S} \leftrightarrows 10,618, \mathrm{Y}_{1},=\mathrm{V} 21,33 \mathrm{~S}-14,4-4,18$;
Per: $\mathrm{S} \gtrsim 10.618, \mathrm{Y}_{1}=\frac{\mathrm{S}-\mid-5,88}{1,455}$;
ed in conseguenza:
Per: $\mathrm{Y}_{1} \rightrightarrows 1,8, \mathrm{~S}=\frac{\mathrm{Y}_{1}}{1,8}$;
Per: $1,8 \leftrightharpoons \mathrm{Y}_{1} \unlhd 11,3, \mathrm{~S}=\frac{\left(\mathrm{Y}_{1}-4,18\right)^{2}-14,4}{21,33}$
Per: $\mathrm{Y}_{1} \gtrsim 11,33, \mathrm{~S}=1,455 \mathrm{Y}_{1}-5,88$.

Per: $\mathrm{S} \unlhd 1, \mathrm{~V}_{1}=\frac{\mathrm{S}}{250 \sqrt{0,008 \mathrm{~S}-0,19316 .-109.875}}$

- 195 -
$\mathrm{W}_{1}=\mathrm{V} 0,008 \mathrm{~S}-0,19316 ;$ e per $\mathrm{S}=0, \mathrm{u}=\mathrm{W}_{1}=0,4395$.
Per: $1 \unlhd \mathrm{~S} \leftrightarrows 10,618, \mathrm{~V}_{1}=\frac{\mathrm{S}}{16.666 \mathrm{~V} 0,12 \mathrm{~S}-\mathrm{-}-0,081-5,25 ;}$
$\mathrm{W}_{1}=\mathrm{V} 0,12 \mathrm{~S}-\mid-0,081 ; \mathrm{A}=0,06$
Per: S $\gtrsim 10,618$,
$\mathrm{V}_{1}=\frac{1,164 \mathrm{~S}}{\mathrm{~S}-5,88} ; \mathrm{W}_{1}=1,165$.
Seguendo nella investigazione, determinai altre relazioni che qui espongo:

Per: $0 \triangleleft \mathrm{~S} \unlhd 2, \mathrm{~W}_{3}=\mathrm{V}_{3}=0,2066 ; \mathrm{t}_{3}=4,84 \mathrm{~S}$.
Per: $\mathrm{S} \gtrsim 2, \mathrm{t}_{3}=3,194 \mathrm{~V}(\mathrm{~S}-\mathrm{-}, 6)^{2}-11,96 ;$
$\mathrm{V}_{3}=\frac{\mathrm{S}}{3,194 \mathrm{~V}(\mathrm{~S}-2,6)^{2} 11.96} ;$
$\mathrm{W}_{3}-\frac{\mathrm{V}(\mathrm{S}-2,6)^{2}-11,96}{3,194(\mathrm{~S}-2,6)}$. Per $\mathrm{S} \leftrightarrows\left(1, \mathrm{Y}_{2}=0,8 \mathrm{~S}\right.$
Per: 1 」S $\preceq 20$

$$
\mathrm{Y}_{2}=0,8 \mathrm{~S}-\frac{\mathrm{S}^{2} 1}{\mathrm{~S}-5,888 .} ; \text { e sensibilmente sussiste }
$$

quest' altra $\left(\mathrm{Y}_{1}-\mid-\mathrm{Y}_{2}\right)=2,5 \mathrm{~S}$, valevole dall' epicentro all' antiepicentro.

Per: $\mathrm{S} \swarrow 6,63, \mathrm{~V}_{5}=0,185 ; \mathrm{t}_{5}=5,405 \mathrm{~S}$.
Per: $\mathrm{S} \leftrightharpoons 6,63, \mathrm{t}_{5}=4,717 \mathrm{~V}(\mathrm{~S}-1,11)^{2}-2,267$;

$$
\mathrm{V}_{\overline{5}}=\frac{\mathrm{S}}{4,717 \mathrm{~V}(\mathrm{~S}-1,11)^{2}-0,267}
$$

Per: $\mathrm{S} \approx 6,6, \mathrm{~V}_{4}=0,205 ; \mathrm{t}_{\mathrm{t}}=4,878 \mathrm{~S}$.
Per: $\mathrm{S} Z 6,6, \mathrm{t}_{4}=3,355 \mathrm{~V}(\mathrm{~S}-2,58)^{2} 0,47$;
$\mathrm{V}_{4}=\frac{\mathrm{S}}{3,355 \mathrm{~V}(\mathrm{~S}=-2,58)^{2} \quad 0,47}$.

Per: $\mathrm{S} \leftrightharpoons 6,6, \mathrm{Y}_{3}=0,038 \mathrm{~S} ; \mathrm{Y}_{4}=0,527 \mathrm{~S}$.
Per: $\mathrm{S} 二 6,6, \mathrm{Y}_{3}=3,35 \overline{\mathrm{~S}}-8,656-3,194 \mathrm{~V}(\mathrm{~S} \mid 2,6)^{2} 11,96 ;$

$$
\mathrm{Y}_{4}=1,362 \mathrm{~S}-3,421
$$

Nelle esposte relazioni $\mathrm{Y}_{2}, \mathrm{Y}_{3}, \mathrm{Y}_{4}$, sono le durate rispettive dei secondi tremiti preliminari ($2 .{ }^{a}$ sezione del sismogramma); delle onde della terza sezione del sismogramma, edi quelle della quarta sezione del sismogramma t_{3}, t_{4}, t_{5}, sono i tempi impiegati rispettivamente dalle onde della terza, quarta e quinta sezione del sismogramma, a percorrere la distanza epicentrale, colle velocití medie rispettivamente di $V_{3,}, V_{4}, V_{5}$.
W_{3}, é la velocitá assoluta apparente delle onde della terza sezione.

In tutte le relazioni esposte, S viene espressa in migliaia di Km; le t e le Y in minuti primi e frazione decimale di minuto primo; le V , le W , e le A , in migliaia di Km. al minuto primo.

Chi appena sia iniziato negli studi sismologici, deve convenire dell' importanza delle nuove relazioni (assolutamente originali), che io presento, ottenute razionalmente.

1. ${ }^{\circ}$ Perché colle relazioni che legano rispettivamente $\mathrm{Y}_{1}, \mathrm{Y}_{2},\left(\mathrm{Y}_{1}-\mathrm{Y}_{2}\right)$, con S , in uso fin' ora, anche collo meno imperfette, si é ben lontano di ottenere nei risultati la sorpren dente approssimazione che siottiene colle mie muove relazioni in rispetto.
2. ${ }^{\circ}$ Perché, col metodo che ho seguito, ho potuto determinare, t_{3}, t_{4} e quindi V_{3} e V_{4} in funzione di s; funzioni fin' ora non ancora determinate.
3. ${ }^{\circ}$ Perché ho potuto comprovare che nessuna onda del sismogramma, é animata da un moto assolutamente uniforme; tutte le onde appartenenti al sismogramma, sono animate da moto accelerato; peró l' accelerazione nelle $\left(V_{4}\right)\left(V_{5}\right)\left(V_{6}\right)$ ecc, é tanto piccola, da potere ritenere il movimento di queste tre ultime onde sensibilmente uniforme.
4. ${ }^{\circ}$ Avendo ottenuto col controllo delle V_{1} calcolate (colle nuove relazioni) colle V_{1} ottenute con metodo diretto, valori pressoché uguali, ho potuto trarne la conclusione che si deve assolutamente respingere l' ipótesi di una propagazione anche solo sensibilmente uniforme, dei pri mi e secondi tremiti preliminari, per $1 \leftrightharpoons \mathrm{~S} \unlhd 10.000$ kilometri circa.
5. ${ }^{\circ}$ Perché infine ho potuto mettere in chiaro tutto quanto di contraditorio si diceva in rispetto alla velocitá delle onde sismiche; e portare quindi un buon contributo alla risoluzione di quistioni vitali in sismologia.

Devo aggiungere che, da qualche anno, la determinazione della distanza epicentrale, quando si conosca Y_{1}, la si ottiene colle tavole di Wiechert-Zoepritz graficamente interpolate da Zeissig.-(1) le quali incominciando della distanza epicentrale zoro (epicentru) sino alla distanza epicentrale di 13000 km , ci forniscono di 10 in 10 km , la durata di Y_{1}.

Con queste tavole si ottengono risultati molto approssimati, presso che coincidenti con quelli che si ottengono colle mie relazioni in proposito.

Le relazioni da me determinate, peró hanno un gran vantaggio anche su queste tavole:

1. Perché colle tavole Zeissig non si ha la funzione: $\mathrm{Y}_{1}=\mathrm{f}(\mathrm{S})$.
2.0 Perché appunto non conoscendo la funzione $\mathrm{Y}_{1}=\mathrm{f}(\mathrm{S})$, il Zeissig non ha potuto extrapolare, non sapendo se l' extrapolazione dopo i 13000 km . seguisse la medesima legge dell' interpolazione fra l' epicentro e 13000 km .; in altri termini dopo i 13000 km . si avevano troppo poche osservazioni attendibili, per potere graficamente tracciare il diagramma delle Y_{1}.

Ne viene di conseguenza che tutti i bollettini i quali usano esclusivamente le tavole di Zeissig pel calcolo della distanza epicentrale, per una durata di Y_{1} maggiore di $12^{\mathrm{m}} 56^{\mathrm{s}}$ si limitano a scrivere: $\mathrm{S}>13000 \mathrm{~km}$., sia poi questa distanza 13500 , o 20000 km .

Non occorre altro per dimostrare l' importanza delle funzioni $Y_{1}=f$. (S) da noi determinate.

Prego la gentilezza dei Signori Sismologhi, nell’ interesse della Sismologia, di controllare queste relazioni che io presento, coi risultati che possano ottenere cogli nementi che sono a loro disposizione, e di comunicarmene l'esito.

Naturalmente, perché il controllo sia efficace, occor-
re che l'osservazione da impiegarsi nella formola non sia affetta da errore troppo grande, come, pur troppo, non di rado avviene nel rilievo degli elementi delle diverse fasi del sismogramma.

$$
\text { La Plata, Maggio } 1914 . \quad \text { Galdino Negri. }
$$

\qquad
Differenz der Laufzeiten fuer die beiden Vorlaufer Wellen eines Erdbebens nach den von E. Wiechert und K. Zoeppritz berechneten und con dem geophysikalischen Institute Göttingen als Tabelle herausgegebenen Laufzeiten zusammengestellt, ausgeglichen und graphisch interpoliert von C. Zeissig - Ingenheim. Von der K. russ. Acad. d. Wiss. in St. Petersburg auf Antrag des Fuersten B. Galitzin, herausgegeben.

[^0]: (I) Rivas. Efemér:des historicas.

