PORTFOLIO OF ADVANCED PROJECTS

Secretaría de Minería

DISCLAIMER

The purpose of this Argentine Government publication is to disseminate third-party information on the exploratory results of advanced projects and the country's geological mining potential.

The information was obtained through different sources, mainly from public access websites of the operating/controlling companies and from technical reports published by them in different web pages under international standards in order to guarantee a higher degree of reliability.

In some cases, the data are estimated. The SECRETARIAT OF MINING is not responsible for their accuracy or reliability.

For further information on the legal, social and/or environmental status of the projects, interested parties should consult the corresponding provincial authorities, since mines are property of the Nation or of the Provinces, depending on the territory in which they are located (according to Articles 124 and 75 paragraph 12 of the NATIONAL CONSTITUTION, and Article 7 and concordant articles of the NATIONAL MINING CODE, approved by Law No. 1919).

The SECRETARIAT OF MINING is not responsible for the improper use of this information.

ADVANCED LITHIUM PROJECTS

Li

CAPEX 7,436 M USD

IDENTIFICABLE RESOURCES 100.3 Mt

POTENCIAL ADITIONAL PRODUCTION LCE 328,500 tn/year

6

CONSTRUCTION

- 1 CAUCHARI OLAROZ
- 2 CENTENARIO RATONES
- 3 MARIANA
- 4 SAL DE ORO
- 5 SAL DE VIDA
- 6 TRES QUEBRADAS

PREFEASIBILITY (PFS)

11 - SALAR DE CAUCHARI

PEA (Pref. Econ. Asses.)

15 - POZUELOS (PPG)

13 - HOMBRE MUERTO NORTE

14 - HOMBRE MUERTO OESTE

12 - CANDELAS

16 - RINCÓN

9 - CAUCHARI

10 - KACHI

20

ADVANCED EXPLORATION

17 - ANCASTI

FEASIBILITY (FS)

7 - PASTOS GRANDES

8 - SALAR DEL RINCÓN

- 18 ANTOFALLA NORTE
- 19 Arizaro
- 20 GALLEGO
- 21 INCAHUASI
- 22 KARACHI SALAR ESCONDIDO
- 23 LAGUNA VERDE
- 24 LOS SAPITOS
- 25 MINA SISIFO MINA PATILLA
- 26 PULAR
- 27 RÍO GRANDE
- 28 SAL DE LA PUNA
- 29 SAL DE LOS ÁNGELES
- 30 SALAR DE ANTOFALLA I A XIII Y BOLLAND VI
- 31 SALAR DE ARIZARO (1)
- 32 SALAR DE ARIZARO (2)
- 33 SALAR TOLILLAR
- 34 SALINAS GRANDES
- 35 SINCERA
- 36 VIRGEN DEL VALLE LITIO

Mt: millions of tons - m3: cubic meters - Mm3: million cubic meters - Moz: million of ounces kt: thousands of tons- koz: thousand of ounces M USD: Million of dollars - e: Estimated

Secretaría de Minería

CAUCHARI OLAROZ

LOCATION (23° 41' 62" Lat. S; 66° 71' 31" Long. W)

Cauchari-Olaroz is located in Jujuy Province in north-west Argentina. The Project is situated in the Salar de Olaroz and Salar de Cauchari, adjacent to Olaroz facility, which has been in production since 2015. It is located at a distance of 1,600 km from Buenos Aires and 200 km from Jujuy Capital.

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Ganfeng Lithium, Lithium Americas Corp, JEMSE

OPERATOR Minera Exar S.A.

AREA 83,104 ha

CAUCHARI OLAROZ

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

Salar de Cauchari is a mixed style salar, with a halite nucleus in the center of the Salar overlain with up to 50 m of fine grained (clay) sediments. The halite core is interbedded with clayey to silty and sandy layers. The Salar is surrounded by relative coarse grained alluvial and fluvial sediments. These fans demark the perimeter of the actual Salar visible in satellite images and at depth extend towards the center of the Salar where they form the distal facies with an increase in sand and silt. At depth (between 300 m and 500 m) a deep sand unit has been intercepted in several core holes in the SE Sector of the Project area. The Salar de Olaroz Basin is one of a number of land locked salars (salt lakes) located high up in the Argentinian Puna Region. This basin is bounded by a pair of north-south reverse faults that thrust Andes Paleozoic sediment west to east as a result of the Pacific Plate colliding with the South American Plate. This results in the west side of the basin being continually pushed higher which replenishes the sediment fill within the basin.

Contact

Li

Palma R. Carrillo 54 PB - San Salvador de Jujuy CP4600, Argentina Cell.: +54 388 483-1000 / info@exar.com.ar Comunicación institucional y prensa: comunicacion@exar.com.ar

Project Status CONSTRUCTION

Company's Last Announcement EXAR Informe de Sostenibilidad 2020 EXAR Informe de Sostenibilidad 2019

Resources and Reserves

RESERVES	Avg. Li Grade (mg/l)	Brine (m ³)	Lithium Metal (t)	LCE (t)
Proven	616	1.6 x 10 ⁷	96,650	514,450
Probable	606	9.6 x 10 ⁸	586,270	3,120,590
Total	607	1.1 x 10 ⁹	682,920	3,635,040

Technical and Economic Information

Estimated average annual production: 40,000 Tn LCE Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 741 M USD Estimated annual employment in operation: + 2,100 Estimated LOM: 40 years Mining Method: Pumping - Evaporation

Sources Consulted Minera Exar – Minera Exar – Proyecto Olaroz Cauchari

LI CENTENARIO RATONES

D

0

Secretaría de Minería

2

CENTENARIO RATONES

LOCATION (24° 52' 58'' Lat. S; 66° 43' 58'' Long. W)

The Centenario Ratones salt flat area is located 300 km west of the city of Salta, at 3,900 m.a.s.l. The project is accessed from San Antonio de Los Cobres along provincial route 129. Pastos Grandes, is located 60 km from the project, with a population of 100 inhabitants.

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Eramet (50,9%), Tsingshan (49,9%)

OPERATOR Eramine Sudamericanas S.A.

AREA 50,000 ha

CENTENARIO RATONES

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The project area is a hydrological basin containing two salt flats, Centenario and Ratones. The Ratones Salar is located to the N of C° Ratones. A mountainous island of metamorphic rocks emerges in the central eastern part of the salt flats, where it forms a wide bay in its southern sector. Within and around the bay is the borate concentration. The Salar de Centenario is the continuation of the previous one, from which it is separated by the confluence of two important alluvial cones that expand into the depression. Genetically, it is related to the development of an important alignment of extinct hot springs, whose travertine remains can be seen on the eastern edge of the salar, coinciding with the regional fracture that limits the depression.

Contact

Li

Sandrine Nourry-Dabi Directrice des Relations Investisseurs Tel: + 33 (0)1 45 38 37 02 E-mail: ir@eramet.com

Project Status CONSTRUCTION

Company's Last Announcement Construction announcement in Q12022 https://www.eramet.com/en/era met-accelerates-metals-energy-transition-and-engages-construction-its-lithium-plant-argentina

Resources and Reserves

RESOURCES	Brine (Mm ³)	Grade Li (mg/l)	Metal Content LCE (t)
Measured	916	408	1,991,000
Indicated	1,442	379	2,912,000
Inferred	3,010	311	4,987,000

Technical and Economic Information

Estimated average annual production: 24,000 Tn LCE Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 595 M USD Estimated annual employment in operation: 284 Estimated employment in construction: 800 Estimated LOM: 50 years Mining Method: Pumping - Chemical adsorption

Sources Consulted

Centenario Ratones Lithium Project. Informe de prensa noviembre 2021 Eramet in Argentina Lithium Proyect. https://www.eramet.com/sites/default/files/2021-11/Eramet-Press-kit-Lithium-project-Argentina-November2021.pdf

Li MARIANA

Secretaría de Minería

3

MARIANA

LOCATION (24° 48' 36'' Lat. S; 68° 18' 00' Long. W)

The Mariana I, II and III project is located in the west of the Province of Salta in the Salar de Llullaillaco.

In a straight line it is located 280 km west of the capital city of Salta.

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Ganfeng Lithium Co., Ltd.

OPERATOR Litio Minera Argentina

AREA 16,000 ha

MARIANA

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

Drilling and hydrogeological information indicate that the Mariana Project in the Llullaillaco Salt Flat is a sedimentary filling complex of a basin, carrying unconfined and interconnected aquifers. They are brine carriers and are found at depths of 328 meters or more. Preliminary geological observation of the boreholes made it possible to recognize 8 lithological types in the well cores carried out in the western, eastern and southern sectors of the basin. The volume of the aquifer is still open in depth since only in two of the boreholes were the volcanic lithologies attributed to the Mesozoic basement intercepted.

Samuel Pigott E-mail: samuel.pigott@ganfenglithium.com Tel: 1 (416) 357 4681 Address: Bank of Canada Building, 250 University Ave #200, Toronto, ON M5H 3E5, Canada

Contact

Project Status CONSTRUCTION

Resources and Reserves

Resources	Average Lithium Grade (mg/l)	Brine (Mm3)	Lithium Metal (t)	LCE (t)
Measured	314	1,6831	528,000	2,810,000
Indicated	316	960	303,000	1,600,000
Inferred	328	470	154,000	786,000

Technical and Economic Information

Estimated average annual production: 10,000 t/year LCE Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 243 M USD Estimated annual employment in operation: N/A Estimated employment in construction stage: N/A Estimated LOM: 25 years Mining Method: Pumping - Evaporation

Sources Consulted http://www.ganfenglithium.com

Li SA

SAL DE ORO

LOCATION (25° 13' 12'' Lat. S; 67° 04' 12'' Long. W)

The Sal de Oro project is located about 1,400 km northwest of Buenos Aires, Argentina, at an altitude of 4,025 m.a.s.l. It is located east of Salar de Hombre Muerto, in the provinces of Catamarca (Antofagasta Dept.) and Salta.

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER POSCO

OPERATOR POSCO ARGENTINA S.A.

AREA N/A

Li SAL DE ORO

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The local geology of the Hombre Muerto Salar includes a basement of intrusive, sedimentary and metamorphic rocks from the Precambrian and early Paleozoic, thick sequences of Ordovician marine sedimentary rocks with a roof of continental Mesozoic sedimentary units.

These are superimposed by the Miocene to Pliocene volcanic deposits, which are common characteristics of the salt flats in the sedimentary basins of the region.

Contact

Li SAL DE ORO Cell: (0387) 421 5333 / (0387) 436 7500 Lizardo González (Gerente administrativo) Igonzalez@poscoargentina.com Chung Sungkook (Gerente de Operaciones) skch1@poscoargentina.com Kihyo Jin (Gerente de Proyectos) kihyojin@poscoargentina.com

Project Status CONSTRUCTION

Resources and Reserves

RESOURCES	Metal Content		
RESOURCES	LCE (t)	KCI (t)	
Indicated	1,580,000	6,239,034	
Inferred	495,000	1,875,878	

Technical and Economic Information

Estimated average annual production: 25,000 t/year LCE Product to obtain: Lithium Hidroxide (LiOH), (Li₂CO₃) CAPEX: 830 M USD Estimated annual employment in operation: N/A Estimated employment in construction stage: N/A Estimated LOM: 30 years Mining Method: Pumping - Evaporation

Sources Consulted http://www.poscoargentina.com/

Ministerio de Desarrollo Productivo **Argentina**

Secretaría de Minería

5

SAL DE VIDA

LOCATION (25° 19' 48'' Lat. S; 66° 52' 48'' Long. W)

The project is located in the northern part of the Hombre Muerto Salar, in the border area of the provinces of Catamarca and Salta, 170 km southeast of the city of Salta.

The project is strategically located in the Hombre Muerto Salar, an active lithium production area of Livent Corp. (former FMC) in the Fenix lithium mine, about 12 miles south of the project area.

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Allkem Limited

OPERATOR Galaxy Lithium

AREA 4,391 ha

Li SAL DE VIDA

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The local geology of the Hombre Muerto Salar includes a basement of intrusive, sedimentary and metamorphic rocks from the Precambrian and early Paleozoic, thick sequences of Ordovician marine sedimentary rocks with a roof of continental Mesozoic sedimentary units.

These are superimposed by the Miocene to Pliocene volcanic deposits, which are common characteristics of the salt flats in the sedimentary basins of the region.

Li SAL DE VIDA Gell: +617 3064 3600 Fax: +617 3064 3699

Project Status CONSTRUCTION

Company's Last Announcement FY22 Half Year Results Briefing 18/02/2022 Bell Potter Unearthed - Corporate Presentation 08/02/2022 December Quarterly Activities Report 18/01/2022

Resources and Reserves

RESOURCES	Metal Content		Pring (Mm3)	Grade	
RESOURCES	LCE (t)	KCI (t)	Brine (Mm ³)	Li (mg/l)	K (mg/l)
Measured	2,198,000	8,484,000	540	770	8,307
Indicated	2,583,000	10,385,000	680	717	8,051
Inferred	376,000	1,289,000	100	706	6,747

Technical and Economic Information

Estimated average annual production: 10,700 LCE (Stage 1) expandible to 32,000 LCE in subsequent stage(s). Product to obtain: Lithium Carbonate (Li₂CO₃), Potassium chloride (KCI) CAPEX: 271 M USD (stage 1) + 524 M USD (Extension) Estimated annual employment in operation: 170 (stage 1) Estimated employment in construction stage: 430 Estimated LOM: +44 years Mining Method: Pumping - Evaporation

Sources Consulted https://www.allkem.co/projects/sal-de-vida

Li TRES QUEBRADAS

Secretaría de Minería

6

TRES QUEBRADAS

LOCATION (27° 27' 00'' Lat. S; 68° 39' 36'' Long. W)

It is located in the Municipality of Fiambalá, 30 km from the border with Chile, 200 km from the Caldera port (Chile). 90 km north of the place Cortaderas, about 4,100 m.a.s.l.

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Zijin Mining Company

OPERATOR Liex S.A.

AREA 16,000 ha

TRES QUEBRADAS

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The project includes the "Tres Quebradas" lagoon, which is not freshwater, but a reservoir of super-saturated brine in sodium, calcium and chlorine. The density of the brine is 1.22 (25% heavier than fresh water). It is black in color due to its content of manganese and other metals.

There are two large salars within the area, they are formed by a very rough surface, which suggests that it is a mature salt formed mostly by a sodium chloride core. The contribution of fresh water to the salt is limited to the extreme south where the Valle Ancho River and the Piscis River enter. All the rivers at the northern end of the complex provide thermal waters laden with metals. The waters that enter the salt flats are, on the one hand, alkaline and carbonated, and acidic with a high metallic content. There are more than a dozen thermal contributions and some have lithium contents of up to 1,000 mg / I, which is a worldwide record. These contributions go directly to the salt flat and the "Tres Quebradas" lagoon where they are concentrated by evaporation.

TRES QUEBRADAS

Contact

Tomas de Pablo Souza (President) tdepablos@liex.com.ar

Project Status CONSTRUCTION

Company's Last Announcement

In October 2021, Neo Lithium announced results of its feasibility study at Tres Quebradas, (Neo Lithium PR Oct 26, 2021). In April 2019, Neo Lithium submitted of the Environmental Impact Assessment ("EIA") for construction of Tres Quebradas. (Neo Lithium PR Apr 15, 2019)

Resources and Reserves

RESOURCES	Dring (m ³)	Grade	Metal Content
RESOURCES	Brine (m ³)	Li (mg/l)	LCE (t)
Measured & Indicated	1.39E+8	1,007	4,000,000
Inferred	2.83E+7	1,239	3,000,000

Technical and Economic Information

Estimated average annual production: 20,000 LCE/year Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 380 M USD Estimated annual employment in operation: N/A Estimated employment in construction stage: N/A Estimated LOM: 35 years Mining Method: Pumping - Evaporation

Sources Consulted https://www.neolithium.ca/project.php https://www.neolithium.ca/pdf/Feasibility-Study-3Q-Project-Nov-25-2021.pdf https://salaresdelnorte.com/wp-content/uploads/2019/11/3Q-Updated-Resource-Report_Final-ilovepdf-compressed-1-11.pdf

PASTOS GRANDES

(24° 34' 48" Lat. S; 66° 40' 48" Long. W)

The property is located in the Los Andes Department, in the central portion of the Puna block of the Province of Salta, in the extreme northwest of Argentina. It extends over the basin called Salar de Pastos Grandes, 13 km southeast of the town of Santa Rosa de Pastos Grandes, 56 km southwest of the town of San Antonio de los Cobres and 154 km west-northwest of the city of Salta , capital of the province. The altitude is 3785 meters above sea level.

MINERALIZATION TYPE Brine

000	
	П

PROPERTY DATA OWNER / CONTROLLER Lithium Americas

OPERATOR Proyecto Pastos Grandes S.A.

AREA 12,619 ha

PASTOS GRANDES

PROJECT GEOLOGY

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The salar is the current expression of a larger sedimentary basin, known as Sijes developed since the Miocene. The Sijes Formation is composed by sandstones, clays, tuffs and evaporites (Halite and Gypsum) and travertine. This unit is a potential aquifer and can store brines rich in Lithium.

The Salar Pastos Grandes is filled with seamless clastics (clay and silt), organic material and fine-grained sediments. The evaporites are represented by Halite, gypsum and ulexite. The age of these sediments is late Quaternary to recent and 30 m thick.

The stratification is horizontal and covers the pre-existing formations and the geological characteristics indicate erosion and dissolution of older rocks and subsidence in the central part of the salt flat. The sediments harbor brines rich in Lithium which has been demonstrated by exploration work.

PASTOS GRANDES

Contact

Canadá 778-656-5820 info@lithiumamericas.com

Project Status FEASIBILITY

Li

Company's Last Announcement "Feasibility Study of the Pastos Grandes Project, Salta Province, Argentina" July 29, 2019

Resources and Reserves

RESOURCES	Average Lithium grade (mg/l)	Lithium Metal (t)	LCE (t)
Measured	446	425,000	2,262,000
Indicated	406	349,000	1,858,000
M+I	427	774,000	4,120,000
Inferred	428	150,000	798,000

Technical and Economic Information

Estimated average annual production: 24.000 t/yr. LCE Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 448 M USD Estimated annual employment in operation: N/A Estimated employment in construction stage: N/A Estimated LOM: 40 years Mining Method: Pumping - Evaporation

Sources Consulted

"Feasibility Study of the Pastos Grandes Project, Salta Province, Argentina" July 29, 2019 https://www.millenniallithium.com/news/2017/millennial-lithium-announces-maiden-measured-and indicated-resource-of-2131000-tonnes-lce-at-pastos-grandes

Li SALAR DEL RINCON

Secretaría de Minería

8

SALAR DEL RINCON

LOCATION (24° 04' 12'' Lat. S; 67° 06' 00'' Long. W)

The Salar de Rincón is a saline body located in the Los Andes Department, in Salta, at 3,760 m.a.s.l. It is located about 280 km northwest of the city of Salta and is accessed by National Route 51; it is near the town of Olacapato Chico and 40 km from the international border with Chile.

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Rio Tinto Group.

OPERATOR Rio Tinto Group.

AREA 83,000 ha

Li SALAR DEL RINCON

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which begins with the formation of freshwater lakes during the Pleistocene, which are salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result is expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The geological framework is given by a southern volcanic range (Tul Tul - Del Medio and Pocitos volcanoes) and the Guayaos mountain range (Ordovicico) in the north, while the rest is comprised by alluvial fields. It shows an almost continuous layer of salt on the surface that reaches variable thicknesses. Borate is 20-30 cm below a layer of halite that makes up the escape. Borates are ulexite and tincal. Ulexite is up to 50 cm thick and is both solid and nodular. It shows strong contamination with chlorides and sulphates. Tincal occurs at the NE edge of the salt flats and was mined in the old Carolina mine. It occurs in various morphologies, some of which are known to miners as greaves or corn grains. It occurs mainly with a reddish lime-clay ganga.

Contact Rio Tinto plc Head Office 6 St James's Square London SW1Y 4AD UK Cell: +44 20 7781 2000

Project Status FEASIBILITY

Resources and Reserves

RESOURCES	Metal Content	RESERVES	Metal Content
RESOURCES	LCE (t)	RESERVES	LCE (t)
Measured	4,900,000	Proven	400,000
Indicated	900,000	Probable	1.580,000
Inferred	5,970,000		

Technical and Economic Information

Estimated average annual production: 25,000 t LCE Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 769,6 M USD Estimated annual employment in operation: N/A Estimated employment in construction stage: N/A Estimated LOM: 40 years Mining Method: Pumping - Chemical adsorption

Sources Consulted

https://www.riotinto.com/invest/Reports https://www.argentina.gob.ar/sites/default/files/cartera_de_proyectos_y_anuncios_de_inversion_2020-2021.pdf https://www.rinconmining.com/salar-del-rincon/

Li CAUCHARI

Secretaría de Minería

9

CAUCHARI

LOCATION (23° 43' 30.9'' Lat. S; 66° 48' 39.9'' Long. W)

The Cauchari project is located in Jujuy, Province in north-west Argentina. The Project is situated in the Salar de Olaroz. It is located at a distance of 1,600 km from Buenos Aires and 250 km from Jujuy Capital.

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Lake Resources NL

OPERATOR Lake Resources NL

AREA 3,980 ha

CAUCHARI

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

Salar de Cauchari is a mixed style salar, with a halite nucleus in the center of the Salar overlain with up to 50 m of fine grained (clay) sediments. The halite core is interbedded with clayey to silty and sandy layers. The Salar is surrounded by relative coarse grained alluvial and fluvial sediments. These fans demark the perimeter of the actual Salar visible in satellite images and at depth extend towards the center of the Salar where they form the distal facies with an increase in sand and silt. At depth (between 300 m and 500 m) a deep sand unit has been intercepted in several core holes in the SE Sector of the Project area.

Li CAUCHARI Telephone: +61 2 9188 7864 Email: hello@lakeresources.com.au

Project Status PREFEASIBILITY

Company's Last Announcement

In February 2022, Lake Resources started drill program and testing at Olaroz, Cauchari and Paso to fast track these projects into S in the TARGET 100 program, and aspirational goal to produce annually 100,000 tonnes of high purity lithium to market by 2030. (Lake PR Feb 14, 2022)

Resources and Reserves

DECOUDCEC	Metal Content				
RESOURCES	(t) LCE	(t) KCL			
Indicated	6,300,000	19,600			

Technical and Economic Information

Estimated average annual production: Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: N/A Estimated annual employment: N/A Estimated LOM: N/A Mining Method: Pumping-Evaporation

Sources Consulted https://lakeresources.com.au/

KACHI

LOCATION (26° 31' 12'' Lat. S; 67° 25' 48'' Long. W)

The Kachi Project is located in the province of Catamarca, approximately 100 km south of the Livent's Hombre Muerto Salar Operation (former FMC).

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Lake Resources

OPERATOR Morena del Valle Minerals S.A.

AREA 74,000 ha

KACHI

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The drills show that the filling of the Kachi basin is predominantly sand dominated by silt and intercalated clays. The surface halite is variable. This leads to a classification of Kachi as an immature salar system. There are ignimbrites inside the sediment of the basin, but of limited distribution and thickness. A conglomerate would form the basis of the sedimentary sequence of the basin that contains brine.

Several depositional geomorphological units can be recognized, including: salar Carachi Pampa; Laguna Carachi Pampa which is a body of salt water fed by volcanic springs on the northeast margin of the salt flat; Vega Carachi Pampa, an ephemeral wetland plain north of the lagoon; and Barreal Carachi Pampa, a clay depression located on the western and northern margins of the salar. These units are partially covered by even more recent alluvial and colluvial sediments and wind sand dunes.

Contact

Telephone: +61 2 9188 7864 Email: hello@lakeresources.com.au

Project Status PREFEASIBILITY

KACHI

Company's Last Announcement

Planned production at Lake's flagship Kachi Lithium Brine Project will be set at 50,000 tonnes/year (tpa) lithium carbonate in the Definitive Feasibility Study (DFS).

Compelling Pre-Feasibility Study (PFS) results for Lake's Kachi Lithium Brine to produce sustainable, high purity, low impurity lithium carbonate to attract premium pricing to meet growing demand from battery makers

Resources and Reserves

DECOUDCES	Grade		Metal Content		
RESOURCES	Li (mg/l)	K (mg/l)	LCE (t)	KCI (t)	
Indicated	289	5,880	1,005,000	6,705,000	
Inferred	209	4,180	3,394,000	24,000,000	

Technical and Economic Information

Estimated average annual production: 50,000 t/yr. LCE **Product to obtain:** Lithium Carbonate (Li₂CO₃) CAPEX: 544 M USD Estimated annual employment in operation: N/A Estimated employment in construction stage: N/A Estimated LOM: 25 years Mining Method: Pumping-Evaporation

Sources Consulted

http://www.lakeresources.com.au/home/ https://lakeresources.com.au/wp-content/uploads/2022/01/lke_kachi-output-increased_19-jan-22.pdf https://lakeresources.com.au/wp-content/uploads/2019/09/02052872.pdf https://lakeresources.com.au/wp-content/uploads/2020/04/lke_compelling-pfs-for-kachi-project_30-apr-20.pdf

Li SALAR DE CAUCHARI

Secretaría de Minería

11

SALAR DE CAUCHARI

LOCATION (23° 45' 26.6'' S; 66° 47' 26.4'' W)

The Cauchari JV is located in the Puna, 230 km west of the city of San Salvador de Jujuy in Jujuy Province of northern Argentina. The Project is at an altitude of 3,900 masl and sits just to the south of paved Hwy. 52 that connects with the international border with Chile (80 km to the west).

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Allkem Ltd.

OPERATOR South American Salars

AREA 27,772 ha

Li SALAR DE CAUCHARI

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

Based on the drilling campaigns carried out in the Salar between 2011 and 2018, six major geological units were identified and correlated from the logging of drill cuttings and undisturbed core to a general depth of over 600 m. No borehole has reached bedrock. Salar de Cauchari is a mixed style salar, with a halite nucleus in the center of the Salar overlain with up to 50 m of fine grained (clay) sediments. The halite core is interbedded with clayey to silty and sandy layers. The Salar is surrounded by relative coarse grained alluvial and fluvial sediments. These fans demark the perimeter of the actual Salar visible in satellite images and at depth extend towards the center of the Salar where they form the distal facies with an increase in sand and silt. At depth (between 300 m and 600 m) a deep sand unit has been intercepted in several core holes in the SE Sector of the Project area.

Deposit Geology

The brine body defined extends ~12.5 km in the N-S direction and extends over 132 m vertically. Brine within the salar is formed by solar concentration, with brine hosted within the different sedimentary units. (Orocobre PR Jan 19, 2018) The Cauchari salar has characteristics of both an immature salar, dominated by clastic sediment, and a mature salar, dominated by halite. Modelling of a gravity and AMT geophysical survey line across the salar suggests the salar is 400 m plus deep, with drilling in adjacent properties to 450 m not intersecting the basement sediments interpreted to form the basement rock beneath the salar.

Li SALAR DE CAUCHARI Contact info@allkem.co Cell: +617 3064 3600 Fax: +617 3064 3699

Project Status PREFEASIBILITY

Company's Last Announcement

- SX-listed lithium players Galaxy Resources and Orocobre will merge into the fifth-largest lithium chemicals company, which will focus on accessing new markets and could help Toyota Motor boost its electric vehicle fleet.

Resources and Reserves

RESOURCES		Gra	ade	Metal Co	ontent
RESOURCES	Tonnage (Mt)	Li (mg/l)	K (mg/l)	LCE (t)	KCI (t)
Measured	600	527	4,438	1,850,000	5,400,000
Indicated	1,200	452	4,145	2,950,000	9,600,000
Inferred	600	473	3,867	1,500,000	4,600,000

Technical and Economic Information


Estimated average annual production: 25.000 t/year LCE Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 446 M USD Estimated annual employment: 698 jobs (e) Estimated LOM: 30 years Mining Method: Pumping-Evaporation

Sources Consulted

https://www.datocms-assets.com/53992/1635466306-190424techreportorocobreni-43-101cauchari-project.pdf https://www.capitaliq.spglobal.com/web/client?auth=inherit#metalsAndMiningProperty/ReservesAndResources?ID=40251

Secretaría de Minería

12

CANDELAS

LOCATION

(25° 47' 59" Lat. S; 67° 14' 36" Long. W)

The Project is located to the East and South of the Salar del Hombre Muerto. Candelas lies approximately 40km ESE of the Hombre Muerto West project. It is around 1,400 km northwest of the capital of Buenos Aires and 170 km west-southwest of the city of Salta (in a straight line).

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Galan Lithium Limited

AREA 24,072 ha

CANDELAS

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The local geology of the Hombre Muerto Salar includes a basement of intrusive, sedimentary and metamorphic rocks from the Precambrian and early Paleozoic, thick sequences of Ordovician marine sedimentary rocks with a roof of continental Mesozoic sedimentary units.

These are superimposed by the Miocene to Pliocene volcanic deposits, which are common characteristics of the salt flats in the sedimentary basins of the region.

Li CANDELAS (08) 9322 6283 within Australia +61 8 9322 6283 from overseas admin@galanlithium.com.au

Project Status PRELIMINARY ECONOMIC ASSESSMENT (PEA 2021)

Company's Last Announcement Press Release 07/01/2022 Quarterly Report 31/12/2021

Resources and Reserves

RESOURCES CATEGORY	In situ Li (kt)	Avg Li (mg/l)	LCE (kt)	Avg K (mg/l)	In situ K (kt)	KCI Equiv. (kt)
Indicated*	167	672	685	5,193	1,734	3,307

Technical and Economic Information

Estimated average annual production: 14,000 t/yr Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 408 M USD Estimated annual employment in operation: N/A Estimated employment in construction stage: N/A Estimated LOM: 25 years Mining Method: Pumping-Evaporation

Sources Consulted

https://www.datocms-assets.com/53992/1635466306-190424techreportorocobreni-43-101cauchari-project.pdf https://www.capitaliq.spglobal.com/web/client?auth=inherit#metalsAndMiningProperty/ReservesAndResources?ID=40251

Li HOMBRE MUERTO NORTE

Secretaría de Minería

13

HOMBRE MUERTO NORTE

LOCATION (25° 13' 12'' Lat. S; 67° 04' 12'' Long. W)

The project is located in the northern part of the Hombre Muerto Salar, in the border area of the provinces of Catamarca and Salta, 170 km southeast of the city of Salta.

The HMN Project is strategically located in the Hombre Muerto Salar, an active lithium production area of Livent Corp. (former FMC) in the Fenix lithium mine, about 12 miles south of the project area).

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER NRG Metals Inc.

OPERATOR

Lithium South Development Corporation

AREA 3,237 ha

HOMBRE MUERTO NORTE

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The local geology of the Hombre Muerto Salar includes a basement of intrusive, sedimentary and metamorphic rocks from the Precambrian and early Paleozoic, thick sequences of Ordovician marine sedimentary rocks with a roof of continental Mesozoic sedimentary units.

These are superimposed by the Miocene to Pliocene volcanic deposits, which are common characteristics of the salt flats in the sedimentary basins of the region.

Li HOMBRE MUERTONORTE (08) 9322 6283 within Australia +61 8 9322 6283 from overseas admin@galanlithium.com.au

Project Status PRELIMINARY ECONOMIC ASSESSMENT (PEA)

Company's Last Announcement

NI 43-101 PRELIMINARY ECONOMIC ASSESSMENT REPORT For The HOMBRE MUERTO NORTE PROJECT Salta Province, Argentina. 3 June 2019

Resources and Reserves

DECOUDCES	Dring (Mm3)	Gra	ade	Metal Co	ontent
RESOURCES	Brine (Mm ³)	Li (mg/l)	K (mg/l)	LCE (t)	KCI (t)
Indicated	119	797	7,039	509,000	1,609,000
Inferred	21,9	534	5,517	62,000	231,000

Technical and Economic Information

Estimated average annual production: 5,000 t/yr. LCE Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 93 M USD Estimated annual employment in operation: N/A Estimated employment in construction stage: N/A Estimated LOM: 30 years Mining Method: Pumping-Evaporation

Sources Consulted

-https://www.ngmetalsinc.com/ -NI 43-101 PRELIMINARY ECONOMIC ASSESSMENT REPORT For The HOMBRE MUERTO NORTE PROJECT Salta Province, Argentina. 3 June 2019 https://www.lithiumsouth.com/projects/

HOMBRE MUERTO OESTE

. 13

Li

Secretaría de Minería

HOMBRE MUERTO OESTE

LOCATION (25° 13' Lat. S; 67° 04' Long. W)

The project is in the geological province of Puna, 90 km north of the town of Antofagasta de la Sierra, province of Catamarca. The HMW Project is located to the West and South of the Salar del Hombre Muerto. The HMW Project is in close proximity to other world class lithium projects owned by Galaxy Resources, Posco and Livent. It is around 1,400 km northwest of the capital of Buenos Aires and 170 km west-southwest of the city of Salta (in a straight line).

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Galan Lithium Limited

AREA 9,493 ha

Ministerio de Desarrollo Productivo Argentina

HOMBRE MUERTO OESTE

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which begins with the formation of freshwater lakes during the Pleistocene, which are salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result is expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The local geology of the Hombre Muerto Salar includes a basement of intrusive, sedimentary and metamorphic rocks from the Precambrian and early Paleozoic, thick sequences of Ordovician marine sedimentary rocks with a roof of continental Mesozoic sedimentary units. These are superimposed by the Miocene to Pliocene volcanic deposits, which are common characteristics of the salt flats in the sedimentary basins of the region.

Li HOMBRE MUERTO OESTE (08) 9322 6283 within Australia +61 8 9322 6283 from overseas admin@galanlithium.com.au

Project Status PRELIMINARY ECONOMIC ASSESSMENT (PEA)

Company's Last Announcement

PowerPoint Presentation (galanlithium.com.au) - Jan 2022

Resources and Reserves

RESOURCES Brine Vol (Mm ³)	Grade		Metal Content		
RESOURCES	Brine Vol (Mm ³)	Avg Li (mg/l)	Avg K (mg/l)	LCE (t)	KCI (t)
Indicated	450	946	9,725	2,267,000	7,496,000

Technical and Economic Information

Estimated average annual production: 20.000 Tn LCE. Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 439 M USD Estimated annual employment in operation: N/A Estimated employment in construction stage: N/A Estimated LOM: 40 years Mining Method: Pumping-Evaporation

Sources Consulted https://galanlithium.com.au/

Li POZUELO (PPG)

Secretaría de Minería

15

POZUELO (PPG)

LOCATION

(24° 34' 48" Lat. S; 66° 42' 36" Long. W)

The PPG Project is constituted by the union of the Pastos Grandes and Pozuelos projects. They are located in the Department of Los Andes, in the central portion of the Puna block of the Province of Salta. They extend over the Salar de Pastos Grandes and Salar de Pozuelos basins, 13 km to the south and southwest of the town of Santa Rosa de Pastos Grandes, 56 km southwest of the town of San Antonio de los Cobres and 154 km west-northwest of the city of Salta, capital of the province. The altitude is 3785 m.a.s.l.

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Lítica Resources (PLUSPETROL S.A.)

AREA 21,324 ha

Ministerio de Desarrollo Productivo Argentina

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The salt flats of Pozuelos and Pastos Grandes share the same local stratigraphy. The basins are separated in the northeast of Pozuelos by the Pozuelos and Geste formations.

Quaternary rocks are observed in the form of accumulations of evaporites such as halite and borates, carbonates and sulphates that occupy the intermontane depression. The Pastos Grandes salt flats are the current expression of a larger sedimentary basin, known as Sijes developed since the Miocene. The Sijes Formation is made up of sandstones, clays, tuff and evaporites (Halite and Gypsum) and travertine. This unit is a potential aquifer and can store lithium-rich brines. The Lilac White Formation represents a larger ancient salt flat than the current one and is a potential aquifer that can store lithium-rich brines. The Salar de Pastos Grandes is filled with unconsolidated classics (clays and silts), organic material and fine-grained sediments. The age of these sediments is late to recent Quaternary and 30 m thick. The sediments contain lithium-rich brines, which has been demonstrated by exploration work.

Contact http://www.pluspetrol.net/litica.php info@litica.com

Project Status PRELIMINARY ECONOMIC ASSESSMENT (PEA)

Resources and Reserves

RESOURCES	Toppage (Mm3)	Gra	ade	Metal Co	ontent
RESOURCES	Tonnage (Mm ³)	Li (mg/l)	K (mg/l)	LCE (t)	KCI (t)
Measured	751	468	4,445	1,852,860	6,368,159
Indicated	266	538	2,876	763,760	1,462,020
Inferred	350	500	3,116	938,500	2,079,613

Technical and Economic Information

Estimated average annual production: 25.000 t LCE Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 338 M USD Estimated annual employment in operation: N/A Estimated employment in construction stage: N/A Estimated LOM: 20 years Mining Method: Pumping-Evaporation

Sources Consulted http://www.pluspetrol.net/litica.php Preliminary Economic Assessment (PEA) - Pozuelos - Pastos Grandes Project NI 43-101 Technical Report Salta, Argentina January 2019

Li RINCON

Secretaría de Minería

16

RINCON

LOCATION (24° 07' 12'' Lat. S; 66° 58' 48'' Long. W)

The Salar de Rincón is a saline body located in the Los Andes Department, in Salta, at 3,760 m.a.s.l. It is located about 280 km northwest of the city of Salta and is accessed by National Route 51; it is near the town of Olacapato Chico and 40 km from the international border with Chile.

MINERALIZATION TYPE Brine

PROPERTY DATA OWNER / CONTROLLER Argosy Minerals

OPERATOR Puna Mining Lithium

AREA 2,794 ha

RINCON

PROJECT GEOLOGY Type of deposit - Brine

Regional Geology

The salt flats are the result of a long paleoenvironmental evolution, which began with the formation of freshwater lakes during the Pleistocene, which were salinized early until their desiccation in the Holocene. The congenital development with the volcanism led to a massive transfer of ions to the basins, whose result was expressed in important volumes of diverse salts, with a predominance of sodium chlorides. The volumetric share of salts in the total fill defines two major types of salt flats: 1) crystalline and 2) earthy. In general terms, the crystalline surfaces admit a concentric zonation of facies (Alonso, 1992). The crystalline salars are impregnated with interstitial brine of diversified ionic content. Almost all the brines are carriers of chemical elements of economic importance, especially boron and lithium.

Deposit Geology

The geological framework is given by a southern volcanic range (Tul Tul - Del Medio and Pocitos volcanoes) and the Guayaos mountain range (Ordovícico) in the north, while the rest is comprised by alluvial fields. It shows an almost continuous layer of salt on the surface that reaches variable thicknesses. Borate is 20-30 cm below a layer of halite that makes up the escape. Borates are Ulexite and tincal. Ulexite is up to 50 cm thick and is both solid and nodular. It shows strong contamination with chlorides and sulphates. Tincal occurs at the NE edge of the salt flats and was mined in the old Carolina mine. It occurs in various morphologies, some of which are known to miners as greaves or corn grains. It occurs mainly with a reddish lime-clay ganga.

Li RINCON Cell: +61 8 6188 8181 / Fax: +61 8 6181 8182

Project Status PRELIMINARY ECONOMIC ASSESSMENT (PEA)

Resources and Reserves

DECOUDCEC	Dring (March 3)	Grade	Metal Content
RESOURCES	Brine (Mm ³)	Li (mg/l)	LCE (t)
Indicated	144	233	245,120

Technical and Economic Information

Estimated average annual production: 10.000 t LCE Product to obtain: Lithium Carbonate (Li₂CO₃) CAPEX: 141 M USD Estimated annual employment in operation: N/A Estimated employment in construction stage: N/A Estimated LOM: 17 years Mining Method: Pumping-Evaporation

Sources Consulted https://exportargentina.org.ar/companies/4719 https://www.argosyminerals.com.au/rincon-lithium-project-argentina https://www.argosyminerals.com.au/sites/default/files/presentation_file/agy-asx-20181130-pea-nov2018.pdf

Thank you

Ministerio de Desarrollo Productivo Argentina

Secretaría de Minería